Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Агрегативная латексов

    Следует иметь в виду, что образующийся латекс должен обладать высокой агрегативной устойчивостью к механическим и термическим воздействиям в процессе сополимеризации и при отгонке мономеров. Устойчивость латекса регулируется многими параметрами, оказывающими влияние на размер латексных частиц и степень насыщенности их поверхности количеством эмульгатора и минеральных солей в растворе, pH водной фазы, конверсией мономеров и пр. [c.254]


    Выделение каучука из латекса. Агрегативную и кинетическую устойчивость синтетических латексов, учитываемую на всех стадиях технологического процесса их получения и переработки, определяет наличие на поверхности латексных частиц адсорбционного слоя из молекул гидратированного эмульгатора. Свойства межфазной поверхности — адсорбированного слоя гидратированных молекул поверхностно-активных веществ (ПАВ) со структурой, близкой к мицеллярной [26], — определяют устойчивость латекса при транспортировании насосами, при хранении, при выделении каучука из латекса. Специфичность воздействия отдельных факторов на латексы привела к делению агрегативной устойчивости на отдельные виды стабильности — к механическому воздействию, к электролитам, к замораживанию, к тепловому воздействию, к действию растворителей [27], но во всех случаях при нарушении устойчивости происходит снятие или преодоление одного и того же по своей природе стабилизующего барьера [28—30]. [c.255]

    Рассматривая теоретические принципы нарушения агрегативной устойчивости синтетических латексов электролитами, надо иметь в виду, что агрегативная устойчивость этих коллоидных систем обусловливается наличием адсорбционного слоя, который имеет достаточно высокий заряд диффузного ионного слоя ( -потенциал для большинства латексов равен 100- 60 мВ) [32], обеспечивающий стабилизацию таких систем за счет электростатических сил отталкивания, и достаточно высокую степень гидратации, наряду с вязкоупругими свойствами и достаточной механической прочностью. С другой стороны, стабилизация синтетических латексов осуществляется в большинстве случаев ионными ПАВ, у которых при введении электролитов в систему резко меняется растворимость и происходит их высаливание из раствора. [c.255]

    Ряд исследователей считают, что коагуляция связана с преодолением энергетического барьера в результате сжатия диффузной части двойного слоя ионов [32] другие полагают, что коагуляция латексов электролитами происходит в основном за счет понижения растворимости ПАВ, стабилизующего латексные частицы (высаливание ПАВ) [33]. Степень ионизации молекул ПАВ в адсорбированном слое в значительной степени зависит от содержания электролита в водной фазе, от концентрации и природы адсорби->ованного ПАВ, от степени гидролиза мыла или от pH [34, 35]. Ломимо этого, степень заполнения поверхности латексных частиц адсорбированными ПАВ оказывает огромное влияние на агрегативную устойчивость этих коллоидных систем, особенно при заполнении поверхности более чем на 40—50% [36—38], что, по-видимому, связано с изменением энтропии коагуляции коллоидной системы. [c.256]


    Выделение БНК из латексов основано на тех же технологических приемах и теоретических положениях, что и для БСК. Однако наличие в латексе и в полимере высокополярного акрилонитрила отражается на агрегативной устойчивости системы. Размер частиц в латексе зависит от типа эмульгатора и находится в пределах 120—60 нм. [c.360]

    СТРУКТУРНЫЙ ФАКТОР АГРЕГАТИВНОЙ УСТОЙЧИВОСТИ СИНТЕТИЧЕСКИХ ЛАТЕКСОВ [c.188]

    Имеется достаточно оснований утверждать, что структурное отталкивание, обусловленное свойствами граничных гидратных прослоек, во многом определяет агрегативную устойчивость синтетических латексов. К такому заключению приводят данные двоякого рода. [c.189]

    С одной стороны, в результате ряда экспериментальных исследований установлено наличие у поверхности латексных частиц, модифицированной адсорбционными слоями эмульгаторов,, гидратных прослоек, эффективная толщина которых имеет порядок 10 м и зависит от ряда факторов степени насыщения адсорбционных слоев, температуры, содержания электролитов в латексе и др. Однако эти данные сами по себе недостаточны для того, чтобы делать какие-либо выводы о влиянии особых свойств и структуры граничных прослоек водной среды на агрегативную устойчивость синтетических латексов. Как будет здесь показано, к представлению о существовании неэлектростатического фактора стабилизации — структурного отталкивания, обусловленного граничными гидратными прослойками, — приводят результаты исследований кинетики коагуляции латексов [c.189]

    Физико-химическая природа основных факторов агрегативной устойчивости латексов может быть с наибольшей полнотой выявлена при исследовании кинетики их коагуляции от начала [c.193]

    Остановимся на основных итогах этих исследований, с тем чтобы выявить закономерности, характеризующие роль структурного фактора в агрегативной устойчивости синтетических латексов и механизме их коагуляции. [c.194]

    Эти закономерности можно объяснить, учитывая структурный фактор агрегативной устойчивости следующим образом. Перемешивание приводит к постепенному разрушению и утончению гидратных прослоек у поверхности частиц, возрастающему с увеличением времени воздействия, и сопровождается ослаблением структурного отталкивания. Вследствие этого устойчивость латекса снижается, что и находит выражение в уменьшении ПБК. Прогрессирующая дегидратация достигает некоторого критического рубежа, за которым следует коагуляция, так как механическое воздействие становится достаточным для преодоления электростатического барьера. Таким образом, индукционный период, предшествующий коагуляции латекса жесткого полимера при иеремешивании, также может быть [c.198]

    Таким образом, рассмотренные закономерности коагуляции латексов электролитами, замораживанием и перемешиванием приводят к выводу, что во всех случаях существенную роль в протекании коагуляционных процессов играет фактор агрегативной устойчивости, связанный со структурой и свойствами граничных гидратных прослоек у поверхности латексных частиц. [c.199]

    ОБ АГРЕГАТИВНОЙ УСТОЙЧИВОСТИ ДИВИНИЛ-СТИРОЛЬНЫХ ЛАТЕКСОВ [c.147]

    Дивинилстирольные латексы, получаемые по разным рецептам и в различных условиях, по агрегативной устойчивости можно разделить на две группы. Латексы, получаемые [c.147]

    I. Параметры, характеризующие исходные продукты дефо латекса, содержание каучука в латексе, поверхностное натяжение, агрегативная устойчивость латекса и т. д., концентрация серной кислоты, концентрация раствора хлористого, натрия, расход масла и латекса на цех. [c.250]

    Как показал эксперимент, с ростом абсолютного значения -потенциала растет и агрегативная устойчивость латексов. Повышение устойчивости латексов с увеличением отрицательного -потенциала общеизвестно. Но подобная же зависимость наблюдается и для перезаряженных латексов с положительно заряженными частицами. При pH = 3,9 в изоэлектрическом состоянии стабилизованные латексы тотчас коагулируют. При pH = 3,1 идет процесс скрытой коагуляции, переходящий за сутки в явную. При pH = 2,7 явной коагуляции не происходит в течение 25 дней. [c.383]

    В последние годы довольно широкое распространение получило мнение, что основную роль в агрегативной устойчивости обычных латексов играет структурно-механический фактор. Однако эту точку зрения применительно к латексам, стабилизованным мылами, нельзя считать правильной. Было показано, что поверхность глобул стабилизованных латексов обычно покрыта слоем эмульгатора лишь на 30—40%. При значительной ненасыщенности адсорбционного слоя на поверхности глобул говорить о наличии вокруг частиц двухмерных студней и о их структурно-механических свойствах едва ли возможно. Устойчивость латексов, стабилизованных мылами, определяется, в основном, действием отталкивающих сил между двойными электрическими слоями, возникающих при перекрытии ионных атмосфер. При этом собственно стабилизующей частью молекулы стабилизатора является ее гидратированные ионизированные группы, а роль углеводородного радикала сводится к фиксации молекулы стабилизатора на межфазной поверхности полимер — вода. [c.384]

    Все сказанное выше ни в коем случае не снижает значения структурно-механических свойств адсорбционного слоя как причины агрегативной устойчивости вообще и латексов в частности. В определенных условиях при образовании на [c.384]


    Латексы являются типичными представителями коллоидных систем, поскольку глобулу полимера с адсорбированным иа нем ионным стабилизатором мож но рассматривать как мицеллу. В то Hte время латексы представляют собой весьма удобную модель для изучения процессов коагуляции. Дисперсная фаза латекса — синтетический полимер, как правило, достаточно химически инертна и в отсутствие стабилизатора не взаимодействует с водой (не гидратирована). Глобулы латекса имеют сферическую форму и представляют собой твердые полимерные частицы. Однако в результате специфических свойств полимера (высокой аутогезионной способности) в латексах возможны явления, подобные коалесценции капелек эмульсии, приводящие к полному или частичному слиянию полимерных частиц. Поэтому латексы сочетают свойства систем с твердой и жидкой дисперсной фазой (золей и эмульсий). Агрегативная устойчивость синтетических латексов обеспечивается адсорбционным слоем поверхностно-активного вещества ионного или неионного характера. [c.108]

    Агрегативная устойчивость латексов БНК ниже по сравнению с латексами бутадиен-стирольного каучука и существенно зависит от температуры, что вызывает необходимость проведения отгонки незаполимеризовавшихся мономеров при более низких температурах и более сильном разбавлении. [c.360]

    Характерной особенностью латексов акрилатных полимеров является высокая чувствительность их агрегативной устойчивости к содержанию гомополимера акрилатов в исходном мономере. Даже незначительные количества (следы) полимера в мономере способствуют резкому снижению устойчивости образующегося латекса как к действию высоких температур (при отгонке незаполимеризовавшихся мономеров), так и при механических воздействиях на латекс (в процессе транспортирования). [c.388]

    Особенности выделения из латекса карбоксилсодержащих каучуков обусловлены наличием ионизующихся карбоксильных групп. В щелочной среде образуются полимерные соли R OO Me повышающие агрегативную устойчивость латекса [5]. [c.398]

    Кинетика коагуляции характеризуется двухстадийным преодолением энергетического барьера, связанным со стабильностью латекса, обусловленной нaличиeм адсорбционного слоя, образующегося за счет эмульгатора и полиэлектролита. Разрушение солевой фор.мы полимера и перевод его в кислотную способствует понижению агрегативной устойчивости системы. [c.398]

    По первому методу в производственных условиях проводят коагуляцию бутадиен-нитрильных карбоксилсодержащих латексов, по второму — бутадиен-стирольных. Повыщение содержания метакриловой кислоты в сополимере приводит к значительному снижению расхода электролита на коагуляцию. Это указывает на возможность уменьшения высокополярными полимерами с карбоксильными группами агрегативной устойчивости латексов, стабилизованных поверхностно-активными веществами типа RSOзNa. Этот прием — введение незначительных количеств (до 0,37о) водорастворимых полимеров с карбоксильными группами позволяет значительно снизить устойчивость латексов типа СКС-30-1,25, стабилизованных алкилсульфонатом натрия, к действию электролитов и обеспечить коагуляцию солями одновалентных металлов (МаС ) взамен хлорида кальция. [c.399]

    Нейман с сотрудниками, применяя нефелометрический и электронномикроскопический методы для исследования кинетики коагуляции различных латексов под действием злектролитов, показали, что коагуляция адсорбционно-насыщенных латексов протекает в две стадии. Первоначальные контакты между частицами возникают по не.защищенным эмульгатором участкам поверхности, и адсорбционная насыщенность глобул увеличивается. В связи с этим, по мнению указанных авторов, возникает дополнительный потенциальный барьер, связанный со структурой и свойствами поверхностных насыщенных адсорбционно-гидратных слоев эмульгатора, что приводит к замедлению коагуляции — начинается ее вторая стадия. У адсорбционно-насыщенных латексов первая стадия коагуляции отсутствует. Обширные исследования в этой области позволили заключить, что агрегативная устойчивость синтетических латексов, полученных на ионогённых эмульгаторах, определяется наличием и совместным действием двух защитных факторов на первой стадии преимущественную роль играет ионно-электростатический фактор стабилизации, на второй — фактор, имеющий неэлектростатическую природу. [c.14]

    Поэтому повышение устойчивости полимеризациоиных систем и агрегативной устойчиво сти латексов, используемых промышленностью, имеет исключительно большое практическое значение. [c.147]

    Целью данной работы явилось, установление взаимосвязи между агрегативной устойчивостью дивинилстирольных латексов и их физико-химической и коллоидной характеристиками и подбор условий, позволяющих влиять на устойчивость латексов. В связи с этим изучалось влияние на физикохимические и коллоидные свойства латексов ряда факторов (рецептуры изготовления, глубины коиверсии мономеров, природы эмульгатора, некоторых добавок, времени хранения). [c.147]

    Со1Поставление полученных данных с агрегативной устойчивостью латексов локазывает, что она находится в прямой зависимости от адсорбционной насыщенности глобул каучука эмульгатором чем больше насыщенность, тем выше стойкость латекса. [c.154]

    Можно усмотреть также наличие определенной связи между агрегативной устойчивостью и размером глобул латекса, а также конверсией мономеров. Следует далее иметь в виду, что увеличение вязкости латекса в тех1Иологических условиях способствует коагуляции по периферии полимери-зационных аппаратов вследствие переохлаждения. [c.154]

    Применялись отечественные саЖи газовая печная и ухтинская канальная, а также их смеси в соотношении 1 1. Сажи вводились в латекс в виде 20%-ных дисперсий, стабилизованных калиевым мылом гидрированной. или диспропорционированной канифоли. Дисперсии готовились путем перемешивания их -в течение суток в шаровой мельнице со скоростью вращения 50 об1мин. Агрегативная и кинетическая устойчивость дисперсий определялась по методам, описанным в [3, 51. [c.187]

    Несмотря на то, что вопрос о связи между -потенциалом и агрегативной устойчивостью лиофобных коллоидных систем чрезвычайно сложен, нельзя отрицать мнение ряда ведущих ученых о том, что электрокинетический потенциал до сих пор остается одной из,важнейших характеристик устойчивости лиофобных коллоидов. На значение -потенциала для устойчивости коллоидных систем, и в частности латексов, указывали Кройт, Овербек, Гаузер и др.  [c.382]

    Введением AI I3 были получены латексы в изоэлектрическом состоянии, причем в них не происходило явной коагуляции. Это указывает на то, что их устойчивость обусловлена не электростатическими силами, а в основном гидратацией полярных участков цепей стабилизатора. Однако агрегативная устойчивость латексов, содержащих неионогенный стабилизатор, в изоэлектрическом состоянии ниже, чем агрегативная устойчивость исходных латексов. Таким образом, заряд латексных глобул, обусловленный адсорбцией ионов, все же способствует повышению устойчивости латексов. [c.385]

    Латексы являются полидисперсными системами. Вследствие малого размера частиц и небольшой разницы в плотностях дисперсной фазы и серума синтетические латексы обладают высокой седи-ментационной устойчивостью. Латексы, стабилизованные обычными мылами, имеют отрицательно заряженные частицы и агрегативно устойчивы в щелочной среде. Для них, как и для эмульсий, стабилизованных солями ншрных кислот, соблюдается правило Шульце — Гарди. Латексы, содержащие поверхностно-активные вещества, в молекуле которых имеется сульфо-группа, устойчивы и в щелочной, И В КИСЛОЙ среде, поскольку сульфокислоты являются сильными электролитами. [c.27]

    Сравнительное изучение типичных коллоидов и высокомолекулярных веществ показало принципиальное различие ряда их свойств. Как уже было указано, типичными свойствами коллоидных систем являются гетерогенность, поверхность раздела фаз, агрегативная и термодинамическая неустойчивость, необратимость. В противоположность типичным коллоидным системам работами Каргина и его сотрудников было показано, что растворы высокомолекулярных веществ — термодинамически обратимые молекулярные гомогенные (однофазные) системы, агрегативно устойчивые без стабилизаторов. Сами высокомолекулярные вещества отличаются способностью к самопроизвольному растворению при соприкосновении с хорошими растворителями, а растворы получаются устойчивыми и без стабилизатора. В этом отношении высокомолекулярные вещества стоят ближе к веществам, образующим истинные растворы. Однако в плохих растворителях или в нерастворяющей среде высокомолекулярные вещества способны давать дисперсии со свободными поверхностями раздела. Эти дисперсии по своим свойствам относятся к типичным микрогетерогенным и коллоидныр системам (например, синтетический латекс и дисперсии полимеризационных смол). [c.18]

    Л.С. модифицируют разл. способами. Так, их карбоксили-руют, для чего, напр,, эмульсионную полимеризацию проводят в присут, метакриловой к-ты (см. Карбоксилатиые каучуки). Получаемые карбоксилатные Л. с. отличаются повыш. агрегативной стабильностью, способностью давать прочные вулканизаты в присут. двухвалентных катионов (Zn, Са, Mg) без использования обычных вулканизующих агентов пленки из этих латексов характеризуются высокой адгезией. Выпускается широкий ассортимент карбоксилатных Л. с. на основе разл. полимеров. Изменяя состав мономеров в процессе синтеза, получают латексы с неоднородными по составу глобулами. Готовые латексы модифицируют прививкой к полимерам мономеров, содержащих функциональные группы, реакционноспособными олигомерами, совмещением полимеров разл. латексов. [c.579]


Смотреть страницы где упоминается термин Агрегативная латексов: [c.198]    [c.128]    [c.134]    [c.135]    [c.148]   
Курс коллоидной химии (1976) -- [ c.383 ]




ПОИСК





Смотрите так же термины и статьи:

Латексы



© 2025 chem21.info Реклама на сайте