Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конструкционные материалы коррозионная стойкость

    При выборе конструкционного материала основным критерием является его химическая и коррозионная стойкость в заданной среде. Обычно выбирают материал абсолютно или достаточно стойкий в среде при ее рабочих параметрах и к расчетным толщинам добавляют на коррозию соответствующие прибавки в зависимости от срока службы аппарата. Вместе с тем следует учитывать и другие виды коррозии (межкристаллитную, точечную, коррозионное растрескивание), которым подвержены некоторые материалы в агрессивных средах. [c.21]


    Е. Конструкционные материалы. Основными конструкционными материалами являются алюминий, углеродистая и нержавеющая стали. Выбор материала определяется расчетными предельными значениями давления и температуры, а также коррозионной стойкостью. В отсутствие коррозионных жидкостей высокая теплопроводность алюминия обеспечивает самую низкую стоимость теплообменника. Алюминий целесообразно применять в диапазоне температур от криогенных до 250 °С, углеродистую сталь — от 250 до 480 "С, нержавеющую сталь — в диапазоне 250—650 С. Для работы при высоких температурах в условиях коррозии предпочтительно использовать нержавеющие стали. Медь удобна для паяных конструкций и обеспечивает идеальные тепловые свойства. Тем не менее ее применяют только в коррозионной среде, где неприменим алюминий. В большинстве автомобильных радиаторов применяются медь или медные сплавы. [c.307]

    Применение полиэтилена определяется комплексом его физико-механически5(, химических и диэлектрических свойств. Из него изготовляют трубы, которые имеют высокую коррозионную стойкость, сохраняют прочность при низких температурах, физиологически безвредны, благодаря чему их используют для транспортирорки воды, растворов солей, соков, вина, пива и т. д. Пленки из полиэтилена применяют в сельском хозяйстве — для остекления парников, теплиц и хранения овощей, в быту, как конструкционный и упаковочный материал. [c.11]

    Цирконий - конструкционный материал для ядерных реакторов. Это обусловлено его высокой прочностью, коррозионной стойкостью и очень малым сечением захвата нейтронов. Гафний, обычно сопутствующий цирконию, наоборот, весьма активно поглощает нейтроны, поэтому необходима глубокая очистка циркония от гафния, что представляет трудную задачу. [c.495]

    Барботажные выпарные аппараты. Выпаривание некоторых сильно агрессивных и высококипящих растворов, например растворов серной, соляной, фосфорной кислот, растворов мирабилита, хлористого магния и других, производят при непосредственном соприкосновении раствора с нагретыми инертными газами. Для таких растворов передача через стенку тепла, необходимого для выпаривания, оказывается практически неосуществимой из-за трудностей, связанных с выбором конструкционного материала, который должен сочетать хорошую теплопроводность с коррозионной и термической стойкостью. [c.375]


    Для борьбы с коррозией теплообменников внутреннюю или наружную поверхность металлических труб и внутреннюю поверхность кожухов облицовывают стеклом применяют плакировку, сочетающую механическую прочность одного металла с коррозионной стойкостью другого. Так, тонкий слой нержавеющей сталп прокаткой соединяют с листом обычной углеродистой стали. Применяют иногда электролитические или химические покрытия, образующие противокоррозионную пленку на конструкционных материалах. При случае несовместимости прокачиваемой жидкости с материа.1 ами труб используют биметаллические трубы, например из никелевого сплава с одной стороны и алюминиевого — с другой. [c.270]

    В качестве перспективного конструкционного материала для бурильных труб большой интерес представляют промышленные сплавы титана, отличающиеся от применяемых в настоящее время сталей и алюминиевых сплавов высокими прочностными характеристиками, небольшим удельным весом, хорошей термостойкостью и коррозионной стойкостью в средах газо-нефтепромыслов. [c.108]

    Кроме того, пластмассы применяют для сосудов, колонн, нутч-фильтров, вентиляторов, насосов и трубопроводов всех видов. Для нутч-фильтров применяется полиэтилен и полипропилен толщиной до 40 лгж. Чаще всего полиэтилен применяется как конструкционный материал для изготовления оборудования в производстве фтористоводородной кислоты. Из полиэтилена или полипропилена штамповкой могут изготовляться рамы для фильтрующих пластин с длиной до 1000 мм. Такие плиты легче чистить и, вследствие высокой коррозионной стойкости, не происходит загрязнение продукта, что особенно важно при производстве красителей и медикаментов. Из полистирола и жесткого поливинилхлорида изготовляют насадочные кольца, характеризующиеся высокой химической стойкостью и небольшим весом при сравнительно небольшой стоимости. Литьем под давлением изготовляют также сопла для фильтров, [c.221]

    Титан немного тяжелее алюминия, но в три раза прочнее его к тому же титан и его сплавы обладают высокой коррозионной стойкостью, жаростойкостью. Они используются в качестве конструкционного материала в самолетостроении, ракетной технике и т. д. Этим требованиям отвечают также легкие магний-циркониевые сплавы. Цирконий почти не захватывает тепловые нейтроны, поэтому он используется в качестве конструкционного материала для атомных реакторов. Использование циркония в ядерной технике потребовало тщательного разделения циркония и гафния, так как гафний в этом случае является вредной примесью. [c.127]

    Скандий сочетает высокую теплостойкость с легкостью, прочностью и значительной химической и коррозионной стойкостью. Поэтому ои весьма перспективен как конструкционный материал (авиация, ракетостроение) и легирующая добавка (в металлургии). Однако пока скандий еще не нашел широкого применения вследствие дороговизны. [c.501]

    КОРРОЗИОННАЯ СТОЙКОСТЬ ВАЖНЕЙШИХ КОНСТРУКЦИОННЫХ МАТЕРИ/ ЛОВ [c.849]

    Оборудование нефтяной и газовой промышленности эксплуатируется в чрезвычайно тяжелых условиях. Долговечность и надежность работы оборудования во многом зависят от технико-экономической характеристики применяемых конструкционных материалов. К ним предъявляются очень высокие требования они должны обладать определенным комплексом прочностных и пластических свойств, сохраняющихся в широком интервале температур хорошими технологическими свойствами, не должны быть дефицитными и дорогими. Во многих случаях предъявляются высокие требования к коррозионной стойкости материала, особенно к специфическим видам разрушения — водородному охрупчиванию, коррозионному растрескиванию, межкристаллитной коррозии и др. Важное значение при выборе конструкционных материалов имеют металлоемкость и масса оборудования. Многие нефтяные и газовые месторождения расположены в отдаленных и труднодоступных районах, во многих районах намечается тенденция увеличения глубины скважин. В связи с этим весьма перспективно использование конструкционных материалов с высокими удельной прочностью, плотностью, коррозионной стойкостью и отвечающих также другим требованиям. К таким материалам относятся прежде всего алюминиевые сплавы, получающие все более широкое применение в нефтяной и газовой промышленности, неметаллические материалы, титан и его сплавы. Эти материалы могут быть использованы также в виде покрытий, что позволяет значительно расширить диапазон свойств конструкционных материалов и увеличить долговечность оборудования. Конструкционный материал должен обладать высокими показателями прочности — времен- [c.23]

    Коррозионную стойкость металлов и сплавов обычно проверяют в лабораторных условиях. При выборе конструкционного материала пользуются справочными данными, основывающимися как на результатах лабораторных испытаний, так и на практических наблюдениях. [c.21]


    По использованию в качестве конструкционного материала алюминий занимает одно из ведущих мест среди других металлов. Особенно широко используют легкие сплавы на основе алюминия, отличающиеся высокой удельной прочностью, коррозионной стойкостью и другими ценными качествами. Алюминий сплавляется со многими металлами. Промышленные сплавы обычно содержат легирующие добавки, вводимые с целью повышения механической прочности. [c.180]

    Правильный выбор (с учетом коррозионной стойкости) конструкционного материала. [c.4]

    Правильный выбор конструкционного материала (с учётом коррозионной стойкости). Характеристика стойкости материалов к действию химических сред [c.6]

    Благодаря малой плотности, коррозионной стойкости и пластичности алюминий находит применение как конструкционный материал, а также в производстве легких сплавов (дюралюминий и др.). [c.231]

    Химические продукты в большинстве случаев вызывают коррозию материала аппаратуры, поэтому при проектировании аппаратов, помимо механических и тепловых свойств, необходимо учитывать коррозионную стойкость конструкционных -материалов. Коррозионная стойкость — важное свойство, определяющее пригодность материала для работы в агрессивных средах. В основном для изготовления аппаратуры и труб0пр01в0д0в применяют различные металлы и их сплавы, хотя находят применение и неметаллические материалы. [c.17]

    Одним из важнейших качеств титана является его высокая коррозионная стойкость во многих агрессивных средах, обусловленная образованием на его поверхности тонкой инертной пленки из диоксида, взаимодействующего с нижележащим слоем титана с образованием низших оксидов, растворимых в металле, благодаря чему защитная пленка прочно связывается с поверхностью. Наиболее устойчив титан и водных растворах нейтральных солей. По коррозионной стойкости в морской воде и горячих концентрированных растворах хлоридов титан значительно превосходит все известные нержавеющие стали и цветные металлы. Если и происходит коррозия титана, то почти всегда она протекает равномерно, без локализации по точкам, язвам или границам зерен. Наряду с Э1ИМ ценность титана как конструкционного материала обусловлена его значительной удельной прочностью (отношение прочности к плотности), которая у титана больше, чем у любого другого металла. [c.274]

    Несмотря на все большее расширение применения алюминиевых сплавов для морских сооружений, все же остается актуальной проблема изыскания конструкционных материалов, физико-химические свойства которых отвечали бы требованиям, предъявляемым нефтегазопромысловым сооружениям при эксплуатации в открытом море. Наиболее перспективный материал для этой цели — титан. Исследования некоторых титановых сплавов в Черном море на различных глубинах (7, 27, 42, 80 м) показали высокую стойкость исследованньгх сплавов на всех глубинах, и их скорость коррозии не превышала 0,01 г/(м2 ч), в то время как нержавеющие стали типа 18-9 были подвержены питтингу глубиной 2,5 мм после экспозиции в течение 21 мес. С увеличением глубины погружения образцов коррозионная стойкость повьииалась, что объясняется понижением температуры и более низкой концентрацией кислорода. Титан обладает очень высокой стойкостью не только в обычных морских средах, но также в загрязненных водах, в морской воде, содержащей хлор, аммиак, сероводород, двуокись углерода, в горячей морской воде. Титан выдерживает очень высокие скорости потока морской воды После 30-суточных испытаний при скорости потока 36,Ь. i, с бьип лолч чены следующие результаты  [c.25]

    Основную массу марганца выплавляют в виде ферромарганца (сплав 60—90% Мп и 40—10% Fe) при восстановлении смеси железных и марганцевых руд. Около 90% марганца применяется в металлургии для раскисления и легирования сталей. Он придает сплавам железа коррозионную стойкость, вязкость и твердость. Технеций коррозионностоек и устойчив против действия нейтронов, поэтому может применяться как конструкционный материал для атомных реакторов. Рений в основном используется в электротехнической промьшленности и как катализатор. [c.571]

    Иногда теплопередача соприкосновением и теплопередача через стенку невозможны. Например, при теплопередаче температура в теплообменнике может быть слищком высокой или обменивающиеся теплотой среды могут оказывать сильное коррозионное воздействие на материал стенки. В этих случаях возникают трудности выбора конструкционного материала с большой термической и коррозионной стойкостью, обладающего одновременно высокой [c.385]

    Применение. Титан очень важный конструкционный материал для современной техники. Титан и его сплавы отличаются высокой прочностью, легкостью, тугоплавкостью, химической стой- костью при обычной температуре. Титан используют в качестве легирующей добавки и как вещество, связывающее кислород, азот, водород и другие примеси в металле в малорастворимые соединепия (последние удаляются в шлак). Ферротитан добавляют в специальные марки сталей для повышения их коррозионной стойкости и механической прочности при высоких температурах [ферротитан получают алюмотермическим восстановлением (флюс СаО) предварительно обожженного (для удаления серы) концентрата РеТЮз], Устройства, изготовленные из титана и его сплавов, [c.511]

    Титан, цирконий и гафний используются как легирующие добавки к специальным сплавам. Они улучшают механические свойства, повышают пластичность, твердость и коррозионную стойкост 5 сплавов. Порошки титана, циркония и гафния используются как поглотители газов (геттеры). Более легкий по сравнению с другими -металлами титан широко применяется также для изготовления турбинных двигателей, корпусов самолетов и морских судов. Особо чистый цирконий используется в качестве конструкционного материала для термоядерных реакторов. Гафний обладает исключительной способностью к захвату нейтронов стержни из этого металла применяются в ядерной технике. Оксиды циркония, титана и гафния находят применение в качестве материалов дл>1 изготовления тугоплавких и химически стойких тиглей и электродов МГД-генераторов. Ti02 используется в качестве красителя (титановые белила). Из карбидов титана и циркония изготовляют шлифовальные круги. Титанат бария (ВаТЮз) широко исполь.-зуется в пьезоэлектрических датчиках. [c.514]

    КЛАССИФИКАЦИЯ И ОБЩ.АЯ Х.АРАКТЕРИСТИК.А МЕТОЛОЕ ИССЛЕДОВАНИЯ КОРРОЗИОННОЙ СТОЙКОСТИ Коррозионная стойкость не является абсолютной характеристикой только металла или другого конструкционного материала, а в равной степени зависит от коррозионной среды. Один и тот же материал, обладая высокой коррозионной и химической стойкостью в одних средах, может оказаться совершенно нэпригодным в других. Большое разнообразие видов коррозии, как по механизму, так и по условиям протекания и характеру коррозионного разрушения, требует использования различных методов исследования коррозионной стойкости металлов и сплавов. Главным здесь является по возможности более полная имитация условий их эксплуатации. [c.5]

    Коррозия металлических сооружений причиняет огромный ущерб всем отраслям (народного хозяйства. Особенно велики потери в результате коррозии нефте-и газопромыслового оборудова ия, что связано с наличием высокоагрессивных комшонентов в рабочих средах и другими особенностями работы оборудования. Долговечность и (надежность работы его во многом зависят от технико-экономической характеристики конструкцион ного материала для нефтегазодобывающего оборудования, к которому предъявляют чрезвычайно высо кие требования он должен обладать сочетанием прочностных и пластических свойств, сохраняющихся в широком интервале температур, высокой коррозионной стойкостью, стойкостью против водородного охрупчивания, коррози-о нного растрескивания и др. Многие нефтяные и газовые месторождения расположены в отдаленных и труднодоступных районах, что усложняет транспортирование оборудования, увеличение глубин скважин и большие габариты оборудоваиия требуют подъемных механизмов большой мощности, поэтому желательно использование конструкционных материалов, позволяющих снизить массу конструкций. Конструкционные материалы должны быть технологичны и едефицитны. [c.3]

    К конструкционному материалу для нефтегазодобывающего оборудования предъявляется широкий комплекс требований наряду с механической прочностью необходимы малая масса, высокая стойкость против коррозии, особенно против специфических видов коррозионного разрушения, стабильность свойств при перепадах температур, стойкость против парафиноотложения и др. Получить материал с оптимальным сочетанием свойств не всегда возможно. Поэтому весьма перспективно нанесение покрытий на стальную основу. При этом достигается экономия дефицитных и дорогостоящих материалов и возможность использования свойств обоих компонентов — высокой защитной способности покрытия и механических свойств основы. Для плакирующего слоя или покрытия могут быть использованы. высоколегированные стали или дефицитные и дорогостояшле металлы (титан, никель и др.), имеющие повышенную коррозионную стойкость. Ввиду того, что толщина плакирующего слоя или защитного покрытия [c.73]

    По уменьшению эффективной работы пары неравномерной аэрации металлы располагаются в ряд цинк, хром, углеродистая сталь, серый чугун, кадмий, алюминий, медь, свинец, нержавеющая высокохромистая стапь, висмут, цирконий, тантал, титан. Из приведенного перечня следует, что весьма перспективный конструкционный материал для подземных сооружений - это титан, который, помимо высоких механических свойств, малой плотности, обладает также хорошими коррозионными характеристиками высокой общей коррозионной стойкостью и высокой устойчивостью к иону хлора, а также низкой чувствительностью к образованию пар дифференциальной аэрации. Из приведенных данных можно также сделать предположение о целесообразности применения циркония в качестве защитного покрытия на стальных изделиях в почвенных условиях. [c.48]

    Никелевые покрытия и плакирующие сплавы на основе никеля используют в зарубежной практике для защиты от коррозии элементов оборудования глубоких нефтяных скважин (труб, вентилей). В работе [48] приведены результаты испытания труб, изготовленных из стали марки AISI 4130 с плакировкой никелевым сплавом 625, полученных методом горячего изостатического прессования. Толщина плакирующего слоя биметалла составляла 29 и 4 мкм. Испытания включали анализ изменения механических свойств материалов после вьщержки в хлорсодержащей среде в присутствии сероводорода, оценку стойкости их к коррозионному растрескиванию и питтинговой коррозии. Результаты лабораторных и промышленных испытаний показали высокие эксплуатационные свойства биметалла при использовании в качестве конструкционного материала для оборудования высокоагрессивных сероводородсодержащих глубоких скважин. [c.96]

    Высокая коррозионная стойкость алюминия и его сплавов в условиях агрессивных сред, характерных для нефтедобывающей промышленности, делает перспективным их использование в качестве конструкционного материала для изготовления буровых, насоснокомпрессорных труб и деталей газопромыслового оборудования. Известно, что алюминий и его сплавы подвергаются коррозионному разрушению в результате общего растворения, питтинга, межкристаллитной коррозии, коррозии под напряжением, расслаивающейся коррозии. Вид коррозионного разрушения определяется составом алюминиевого сплава, зависит от состава коррозионной среды и условий эксплуатации. Так, при использовании бурильных труб из алюминиевых сплавов возможно развитие контактной коррозии за счет соединения их с остальными замками. В зазорах резьбовых соединений происходят процессы щелевой коррозии, а при нагружении таких соединений пере-меннылА нагрузками возникают процессы фреттинг-коррозии. Значительное влияние на характер коррозионного разрушения оказывает pH коррозионно-активной среды. Практика эксплуатации алюминиевых труб показывает, что с увеличением pH от 1 до 13 меняется характер коррозионного поражения равномерная коррозия — в сильнощелочной, щелевая - в сильно кислой областях, питтинговая - при pH = 3-11. [c.120]

    В установках для подготовки нефти используют оборудование различного назначения теплообменники, насосы, дегидраторы, резервуары и др. Среди них наиболее металлоемкие и весьма ответственные резервуары, предназначенные для предварительного отстоя обводненной нефти, сбора и отстоя сточной воды, сбора и хранения товарной нефти и нефтепродуктов. Исходя из условий эксплуатации резервуаров, к конструкционному материалу предъявляют сложный комплекс требований он должен обладать высокой прочностью при достаточно высокой пластичности и вязкости, минимальной склонностью к хрупкому разрушению, хладоломкости и старению, низкой чувствительностью к надрезам, хорошей свариваемостью, высокой коррозионной стойкостью к воздействию атмосферы, грунтовых вод, хранимых нефтей и нефтепродуктов. Основной конструкционный материал для изготовления резервуаров — сталь различных марок. В последние годы получают все большее распространение алюминиевые сплавы для изготовления отдельных узлов резервуаров — крыш и верхних поясов вертикальных цилиндрических резервуаров. [c.164]


Смотреть страницы где упоминается термин Конструкционные материалы коррозионная стойкость: [c.62]    [c.101]    [c.103]    [c.101]    [c.103]    [c.261]    [c.135]    [c.295]    [c.73]    [c.135]    [c.3]    [c.49]    [c.258]   
Ремонт и монтаж оборудования химических и нефтеперерабатывающих заводов (1971) -- [ c.88 ]




ПОИСК





Смотрите так же термины и статьи:

Конструкционные материалы

Коррозионная стойкость

Материалы стойкости



© 2025 chem21.info Реклама на сайте