Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бойля газов

    Точка Бойля газа определяется равенством  [c.165]

    Далее Блэк показал, что если оксид кальция оставить на воздухе, то он медленно превращается в карбонат кальция. Исходя из этого, Блэк заключил (правильно ), что в атмосфере присутствует небольшое количество углекислого газа. Это было первое четкое указание на то, что воздух не простое вещество и, следовательно, вопреки представлениям древних греков он не является элементом в определении Бойля, а представляет собой смесь по крайней мере двух различных веществ обычного воздуха и углекислого газа. Изучая влияние нагревания на примере карбоната кальция, Блэк установил, как меняется вес вещества при нагревании. Он также определил, какое количество карбоната кальция нейтрализует заданное количество кислоты. Таким образом, Блэк изучал химические реакции, используя метод количественного измерения. Этот метод был развит и усовершенствован Лавуазье. [c.40]


    Так, французский химик Анри Виктор Реньо (1810—1878) провел большое количество тщательных измерений объемов и давлений газов и показал, что установленная Бойлем за три столетия до этого зависимость между объемом и давлением данного количества газа не вполне точна. Причем отклонения от закона наблюдаются главным образом при увеличении давления или при понижении температуры. [c.120]

    Примерно в то же самое время анализом поведения газов занимались шотландский физик Джеймс Кларк Максвелл (1831 — 1879) и австрийский физик Людвиг Больцман (1844—1906). Эти ученые установили следующее. Если предположить, что газы представляют собой совокупность большого числа беспорядочно движущихся частиц (кинетическая теория газов), то закон Бойля выполняется в том случае, если, во-первых, между молекулами газа не действуют силы притяжения и, во-вторых, молекулы газа имеют нулевые размеры. Газы, отвечающие этим требованиям, были названы идеальными газами. [c.120]

    Рассматриваемым ниже законам Бойля, Гей-Люссака, Менделеева— Клапейрона и Дальтона строго подчиняются только идеальные газы. Однако в технических расчетах этими законами достаточно точно, без особо грубых ошибок, можно пользоваться для любых газов до пределов их критических констант .  [c.45]

    Из законов Бойля и Гей-Люссака получаем очень часто применяющуюся в технических расчетах формулу для приведения объема газа к нормальным условиям (0° С и 760 мм рт. ст.)  [c.46]

    Математическое обобщение законов Бойля и Гей-Люссака приводит к уравнению, связывающему объем газа с его температурой и давлением (уравнение Менделеева — Клапейрона) и 48 [c.48]

    Первый этап расчетов — приведение замеренных объемов газа к первоначальной температуре, при которой производился отсчет объема анализируемого образца, делают по формуле Бойля — Мариотта и Гей-Люссака [c.247]

    Закон Бойля — Мариотта. Согласно этому закону для двух состояний газа при переходе из одного в другое без изменения температуры [c.22]

    Таким образом, согласно закону Бойля — Мариотта прп одной и той же температуре плотность идеального газа изменяется прямо пропорционально, а удельный объем — обратно пропорционально абсолютному давлению газа. [c.22]

    Уравнение состояния идеального газа. В общем случае переход газа из одного состояния в другое сопровождается изменением 1 сех трех параметров состояния. Пользуясь законами Бойля — Мариотта и Гей-Люссака, можно вывести уравнение, связывающее параметры состояния газа в этом случае. [c.22]


    Аналогично поведению реальных газов в точке Бойля растворы полимеров в указанных условиях ведут себя, как идеальные. В частности, в 0-условиях второй вириальный коэффициент в концентрационной зависимости осмотического давления обращается в нуль, и растворы полимеров подчиняются закону Вант-Гоффа вплоть до концентраций в несколько процентов. Определение условий обращения в нуль второго вириального коэффициента уравнения осмотического давления является, таким образом, одним из способов нахождения 0-температуры. [c.32]

    Согласно закону Бойля — Мариотта, при постоянной температуре давление, производимое данной массой газа, обратно пропорционально объему газа  [c.11]

    Зависимость между объемом газа, давлением и температурой можно выразить общим уравнением, объединяющим законы Бойля — Мариотта и Гей-Люссака  [c.12]

    Что представляет собой бурый газ, выделяющийся при действии концентрированной азотной кислоты на металлы Из каких молекул он состоит Почему его окраска усиливается при повышении температуры и ослабляется при ее понижении Будет ли этот газ подчиняться закону Бойля — Мариотта, если подвергать его сжатию при постоянной температуре Составить уравнения реакций, происходящих при растворении этого газа в воде и в растворе щелочи. [c.230]

    Закон Бойля — Мариотта. При постоянной температуре для данной массы газа произведение давления газа на его объем есть величина постоянная [c.9]

    Закон Бойля позволяет предсказать давление или объем образца газа при постоянной температуре, когда известны три величины из набора Я,, V , Р2 или У2- Рассмотрим такой пример  [c.386]

    Почему же все обычные газы при нормальных атмосферных условиях подчиняются законам Бойля и Шарля Объяснение найдете в следующем разделе. [c.392]

    Бойля—Мариотта закон При постоянной температуре объем данного Образца газа обратно пропорционален давлению [c.543]

    Закон Бойля-Мариотта, связывающий давление и объем газа Р = = а У. [c.113]

    Бойль запирал ртутью немного воздуха в закрытом конце изогнутой трубки, изображенной на рис. 3-2,а, а затем сжимал этот воздух, понемногу добавляя ртуть в открытый конец трубки (рис. 3-2,6). Давление, испытываемое воздухом в закрытой части трубки, равно сумме атмосферного давления и давления столбика ртути высотой к (/г-высота, на которую уровень ртути в открытом конце трубки превышает уровень ртути в закрытом конце). Полученные Бойлем данные измерения давления и объема приведены в табл. 3-1. Хотя Бойль не предпринимал специальных мер для поддержания постоянной температуры газа, по-видимому, в его опытах она менялась лишь незначительно. Тем не менее Бойль заметил, что тепло от пламени свечи вызывало значительные изменения свойств воздуха. [c.117]

    Каждое из этих уравнений представляет собой один из вариантов закона Бойля-Мариотта, который обычно формулируется так для заданного числа молей газа его давление пропорционально объему, при условии что температура газа остается постоянной. [c.121]

    Бойль установил, что для заданного количества любого газа при постоянной температуре взаимосвязь между давлением Р и объемом V вполне удовлетворительно описывается соотнощением [c.121]

    Для сопоставления объемов и давлений одного и того же образца газа при различных условиях (но постоянной температуре) удобно представить закон Бойля в следующей форме  [c.121]

    Известно, что воздух при нагревании расширяется, следовательно, при этом должна уменьшаться его плотность. По этой причине воздушные шары, наполненные теплым воздухом, поднимаются вверх. Спустя почти сто лет после того, как Бойль вывел свой закон, французские ученые Жозеф Луи Гей-Люссак (1778-1850) и Жак Шарль (1746-1823) провели исследование влияния изменения температуры на объем образца газа. Подобные измерения нетрудно выполнить при помощи устройства, схематически изображенного на рис. 3-4. При этом получаются данные, аналогичные показанным на рис. 3-5, из которого видно, что график зависимости объема [c.123]

    Полученное соотношение представляет собой не что иное, как закон Бойля-Мариотта. Подобным же образом можно вывести из объединенного газового закона (3-8) закон Гей-Люссака, согласно которому при постоянных давлении и числе молей заданного образца газа отношение его начального объема к конечному совпадает с отношением соответствующих температур  [c.128]

    Давление газа и закон Бойля-Мариотта [c.135]

    Описанная выше простая модель газа позволяет объяснить существование у него давления и на молекулярном уровне истолковать закон Бойля-Мариотта. Рассмотрим сосуд, который для простоты рассуждений имеет форму куба с длиной ребра / (рис. 3-9,6). Допустим, что из сосуда полностью удален воздух и в нем находится всего 1 молекула массой ш, движущаяся со скоростью V. Предположим, что составляющие вектора скорости молекулы в направлении осей х, у и г, совпадающих с ребрами куба, равны и г,. [c.135]

    Последнее выражение очень напоминает уравнение (3-4), описывающее закон Бойля-Мариотта, согласно которому произведение давления газа на его объем постоянно при постоянной температуре. Сделанный нами расчет, который основывается на простых предположениях молекулярнокинетической теории, приводит к выводу, что произведение РУ постоянно при заданной средней скорости молекул газа. Если эта теория верна, средняя скорость движения молекул газа не может зависеть от его давления или объема, а зависит только от температуры газа. Средняя кинетическая энергия молекул, которую мы обозначим символом е (е-греческая буква [c.138]


    Закон Бойля-Мариотта при постоянной температуре объем образца газа обратно пропорционален его давлению. [c.155]

    При каких условиях применим закон Бойля-Мариотта Закон Гей-Люссака Как эти законы выводятся из объединенного закона поведения идеального газа  [c.158]

    Данные, связывающие давление и объем идеального газа при постоянной температуре, могут быть представлены графически несколькими способами. Какой из указанных ниже результатов не должен наблюдаться при условии, что выполняется закон Бойля  [c.585]

Рис. 4. Схема опыта а), иоказывающего, что объем газа обратно пропорционален давлению при постоянной температуре (закон Бойля), и полученная кривая зависимости объем — давление (б). Ртуть, налитая в длинное плечо У-образной трубки, запирает воздух в коротком- плече. С увеличением массы ртути высота столбика воздуха уменьшается. Рис. 4. Схема <a href="/info/333504">опыта</a> а), иоказывающего, что <a href="/info/30005">объем газа</a> обратно пропорционален давлению при <a href="/info/94875">постоянной температуре</a> (<a href="/info/7230">закон Бойля</a>), и <a href="/info/152346">полученная кривая</a> <a href="/info/375153">зависимости объем</a> — давление (б). Ртуть, налитая в <a href="/info/1061742">длинное плечо</a> У-<a href="/info/1360445">образной трубки</a>, запирает воздух в коротком- плече. С <a href="/info/26568">увеличением массы</a> <a href="/info/1332744">ртути высота столбика</a> воздуха уменьшается.
    Кавендиша (возможно, под влиянием Дж. Блэка) особенно заинтересовал газ, образующийся при взаимодействии кислот с некоторыми металлами. Ранее этот газ был выделен Бойлем и Гейлсом, а возможно, и другими исследователями, но Кавендиш первым в 1766 г. провел систематическое изучение его свойств, поэтому ему обычно и приписывается честь открытия этого газа, получившего название водород. [c.41]

    По определенному значению z можно найти процент отклонения для данного газа от за1кона Бойля-Мариотта, если воспользоваться соотношением [c.21]

    Если состав газа неизвестен, имеем только плотность, то по кривым Брауна можно найти среднекрити-ческие давление и температуру, а по ним определить 2 и отклонение изучаемого газа От закона Бойля-Мариотта. [c.21]

    Ооювными законами идеальных газов являются законы Бойля— Мариотта и Гей-Люссака. Эти законы были получены экспе-римен гально, но они могут быть выведены и теоретическим путем на основании молекулярно-кинетической теории газов. [c.21]

    Пфефер, пользуясь осмометром с полученной им полупроницаемой перегородкой из Си2ре(СЫ)в, измерил (1877) осмотическое давление водных растворов тростникового сахара. Основываясь на данных Пфефера, Вант-Гофф показал (1886), что в разбавленных растворах зависимость осмотического давления от концентрации раствора совпадает по форме с законом Бойля—Мариотта для идеальных газов. В позднейших, более точных исследованиях это положение было подтверждено, а также были точно измерены осмотические давления в концентрированных растворах, сильно превышающие давление идеальных газов. [c.242]

    Как видно из выражения (1,37), величина k зависит от общего объема системы. Так как при постоянной температуре объем идеального газа (по закону Бойля — Мариотта) обратно пропорционален давлению, то [см. уравнение (1,37)] количество вещества, реагирующего в единицу времени, для реакции в газах прямо пропорционально давлению в степени, на единицу меньшей, чем порядок реакции. Следовательно, для реакций первого порядка количество вещества, реагирующего в единицу времени, не зависит от об-uiero давления для реакций второго порядка это количество прямо пропорционально общему давлению, а для реакций третьего порядка — прямо пропорционально квадрату общего давления и т. д. [c.25]

    Такое поведение иллюстрирует общее для всех газов соотношение. Оно называется законом Бойля по имени английского ученого XVII века, который первым предложил его. Одна из формулировок этого закона - при постоянной температуре произведение давления на объем остается постоянным pV - onst. Предположим, что у нас было 12 л газа при давлении [c.386]

Рис. VI.7. Закон Бойля объем данного образца газа при постоянной температуре обратно пропорционален его давлению, т. е. РУ = onst. Так же выглядит фафик зависимости давления от обьема для любого образца газа при постоятюй температуре. Рис. VI.7. <a href="/info/7230">Закон Бойля</a> объем данного <a href="/info/428753">образца газа</a> при <a href="/info/94875">постоянной температуре</a> обратно пропорционален его давлению, т. е. РУ = onst. Так же выглядит фафик <a href="/info/3436">зависимости давления</a> от <a href="/info/1023533">обьема</a> для любого <a href="/info/428753">образца газа</a> при постоятюй температуре.
    Мы предположили, что природный газ подчиняется законам Бойля-Мариотта и Дальтона. Это не совсем точно, во-первых, потому, что смесь газов и паров углеводородоа конечно не является идеальным газом, далее потому, что под действием давления могут итти химические реакции присоединения. Теи не менее приложение этих законов, не давая строгих результатов, приводит к вполне удовлетворительным приближенным значениям. [c.133]

    Уравнения, описывающие различные газовые законы, представляют собой строгие математические выражения. Измерения объема, давления и температуры, более точные, чем проводились Бойлем и Гей-Люссаком, показывают, что газы лишь приближенно подчиняются этим уравнениям. Свойства газов значительно отклоняютск от так называемых идеальных свойств, когда газы находятся под высоким давлением или при температурах, близких к температурам кипения соответствующих жидкостей. Таким образом, газовые законы, вернее законы состояния идеального газа, достаточно точно описывают поведение реальных газов только при низких давлениях и при температурах, далеких от температуры кипения рассматриваемого вещества. В разд. 3-8 мы вновь обратимся к проблеме уточнения простого закона состояния идеального газа, с тем чтобы он мог правильнее учитывать свойства реальных, неидеальных газов. [c.132]

    Теперь нетрудно понять, что поизведение РУ в законе Бойля-Мариотта пропорционально кинетической энергии 1 моля газа если умножить и разделить правую часть выражения (3-23) на 3, получим [c.138]


Смотреть страницы где упоминается термин Бойля газов: [c.32]    [c.10]    [c.118]    [c.96]    [c.110]    [c.17]   
Общая химия (1974) -- [ c.275 , c.304 ]




ПОИСК





Смотрите так же термины и статьи:

Бойль

Бойля идеального газа

Газы разделение отклонение от закона Бойля-Мариотта

Зависимость объема газа от давления. Закон Бойля

Первоначальное изучение газов (Ван-Гельмонт, Бойль)

Точки Бойля взаимная растворимость газов



© 2025 chem21.info Реклама на сайте