Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Резина, химическая стойкость

    Химическая стойкость резин в различных средах [c.210]

    Во второй стадии полимеризации при дальнейшем нагревании линейного полихлоропрена стабилизирующее действие введенного ранее противоокислителя нарушается и начинается реакция присоединения макромолекул друг к другу. Этот процесс, названный по аналогии с процессом переработки полибутадиена в резину реакцией вулканизации, можно ускорить добавлением окислов металлов (2пО, MgO). Вулканизаты полихлоропрена нерастворимы, лишь слабо набухают в маслах и в бензинах, обладают высоким пределом прочности при растяжении, близким к пределу прочности вулканизатов натурального каучука, но более устойчивы к действию истирающих усилий. Вулканизованный полихлоропрен превосходит резины из натурального каучука по масло- и бензостойкости, негорючести, химической стойкости, способности длительное время выдерживать нагревание до 130— [c.280]


    Гуммировочные полуэбониты и эбониты обладают большей по сравнению с мягкой резиной химической стойкостью при повышенных температурах. Эти материалы менее склонны к охлаждению, набуханию и менее газопроницаемы. Поэтому при выборе обкладки для аппаратов, работающих в агрессивных средах при повышенных температурах, под давлением или вакуумом и при наличии газовой фазы, предпочтение отдают полуэбонитам и эбонитам. Например, в сернокислых средах с примесями сероводорода и сероуглерода хорошо работают обкладки из полуэбонита ГХ-52 (1752) по подслою полуэбонита ГХ-51 (1751). В среде влажного и сухого хлора удовлетворительно работают обкладки из эбонита ГХ-1213 [c.38]

    Стеклоэмалевые покрытия отличаются высокой химической стойкостью почти ко всем органическим и минеральным кислотам и прочим продуктам в широком интервале температур. Однако эмалевое покрытие невозможно обрабатывать, притирать, поэтому в качестве запорного элемента в эмалированных вентилях и клапанах с проходными каналами небольшого диаметра применяют фторопластовые диафрагмы, по химической стойкости к агрессивным средам и диапазону рабочих параметров не уступающие эмалевому покрытию. В арматуре с проходным каналом большого диаметра вследствие необходимости слишком большие усилия для герметизации затвора диафрагмой из сравнительно жесткого фторопласта уплотнение осуществляется резиной. Химическая стойкость и температурный диапазон резины значительно меньше, что ограничивает область применения такой арматуры. [c.105]

    При повышенных температурах более высокой, чем резина, химической стойкостью обладают, как правило, полуэбонит и эбонит. Они менее склонны к окислению и набуханию. [c.108]

    Жидкие силиконы можно перегонять при нормальном давлении без разложения. Они представляют собой жидкости соломенно-желтого цвета с весьма высоким индексом вязкости и низкой температурой застывания и могут применяться в качестве специальных смазочных масел. Некоторые силиконы вследствие высокой теплостойкости могут применяться в качестве теплоносителей. Из них можно вырабатывать также консистентные смазки, отличающиеся хорошей теплостойкостью и химической стойкостью. Силиконовые смолы с асбестом и стеклянным волокном применяют как уплотнители и прокладочный материал. Силиконовые каучуки стойки, длительно выдерживают воздействие температур до 200°, не становясь при этом хрупкими и не размягчаясь. Силиконовую резину можно вальцевать и перерабатывать в шкурку [161]. [c.209]


    Целесообразность применения мягкой резины, полуэбонита или эбонита определяют для каждого конкретного случая. Гуммировочные полуэбониты и эбониты обладают большей по сравнению с мягкой резиной химической стойкостью при повышенных температурах. Эти материалы менее склонны к окислению, набуханию и менее проницаемы. Поэтому при выборе обкладки для аппаратов, работающих в агрессивных средах при повышенных температурах под давлением или вакуумом и при наличии газовой фазы, предпочтение отдают полуэбонитам и эбонитам. Например, в сернокислотных средах с примесями сероводорода и сероуглерода хорошо работают обкладки из полуэбонита 1752 по подслою полуэбонита 1751. В среде влажного и сухого хлора удовлетворительно работают обкладки из эбонита ИРП-1213 по ПОДСЛОЮ полуэбонита ИРП-1212. Их изготовляют на основе натурального каучука, что обусловливает значительную усадку покрытия при вулканиза- [c.39]

    Химическая стойкость резин в первую очередь определяется видом каучука, его строением, наполнителем, вулканизующими агентами и другими факторами. Подавляющее большинство резин стойки в растворах щелочей и кислот, главным образом разбавленных, в растворах солей, а некоторые из них и в отдельных органических растворителях маслах, бензинах, алифатических углеводородах, спиртах. Действие растворителей на натуральный и полисульфидный каучуки показано на рис. 3.19. Химически стойкие резины на основе бутил-каучука, найрита, фторкаучуков, этилен-пропиленовых и других каучуков обладают повышенной, по сравнению с остальными резинами, химической стойкостью, главным образом к окислителям, в которых обычно резины [c.211]

    Стандартные обкладочные эбониты обладают большей, по сравнению с мягкой резиной, химической стойкостью при повышенных температурах. Эбониты менее склонны к окислению, набуханию и менее проницаемы. Поэтому при выборе типа обкладки для аппаратов, работающих в агрессивных средах при повышенных температурах, под давлением или вакуумом и при наличии газовой фазы, предпочтение отдают эбонитам. [c.22]

    Покрытия на основе каучуков обладают комплексом ценных свойств высокой химической стойкостью в сочетании с износостойкостью, небольшой стоимостью, хорошей адгезией к металлической поверхности, высокой стойкостью к деформациям и ударам, простотой нанесения. В зависимости от используемых материалов покрытия можно наносить следующими способами обкладкой металлической поверхности листами резины (гуммированием), нанесением композиций в виде жидкостей или паст с последующей вулканизацией, нанесением латексов или других каучуковых дисперсий, газопламенным напылением порошкообразных каучуков. Все покрытия, за исключением гуммировочных, можно отнести к покрытиям пленочного типа. [c.135]

    Для гуммирования применяются специальные марки резины с повышенной химической стойкостью. Резина обладает хорошей адгезией к стали и чугуну. Сырая резина приклеивается к стенкам аппарата соответствующим клеем, после чего подвергается вулканизации. При ремонте гуммированный слой удаляется, поверхность аппарата тщательно очищается от клея и остатков резины, промывается бензином, затем резиновые листы приклеиваются и проводится вулканизация. [c.153]

    Полуэбонит и эбонит при повышенных температурах обладают, как правило, лучшей химической стойкостью, чем резина они менее склонны к окислению и набуханию. Поэтому эти материалы следует выбирать для гуммирования аппаратов, работающих при повышенных температурах под давлением или в условиях вакуума (остаточное давление не ниже 100 мм рт. ст.), при наличии газовой среды, для обеспечения чистоты продукта, при отсутствии механических воздействий на аппарат, а также для работы в условиях тропического климата. [c.123]

    Химическая стойкость стандартных обкладочных резин и эбонитов [c.441]

    НК хорошо растворяется в бензине, бензоле, хлорированных углеводородах, но нерастворим в спиртах. Обладает высокой клейкостью. Плотность НК — 910-930 кг/м . Резины на основе натурального каучука имеют высокую эластичность, небольшие гистерезисные потери, низкое теплообразование при многократных деформациях, хорошие адгезионные и когезионные свойства. К недостаткам резин на основе НК относят их низкую масло- и химическую стойкость, старение под действием тепла, солнечного света, кислорода. [c.14]

    Определение непроницаемости гуммировочных материалов по интенсивности люминесцентного свечения. Сущность метода заключается в определении (при нормальных и повышенных температурах) глубины проникновения жидких агрессивных сред в гуммировочные материалы по изменению степени интенсивности люминесцентного свечения при освещении ультрафиолетовыми лучами введенных в гуммировочный материал люминесцентных веществ. Образцы в виде круга толщиной 2-4 мм и диаметром 23 мм — для испытаний при нормальной и 68 мм — при повышенной температурах — изготовляют из резиновой смеси, в которую при смешении на вальцах вводят люминесцирующее вещество — люминофор-59 в количестве от 0,01 до 0,1 масс. ч. на 100 масс. ч. каучука для резин, не содержащих углеродных саж, и от 0,5 до 1,0 масс. ч. на 100 масс. ч. каучука для резин, содержащих углеводородные сажи. Толщину образцов до испытания тщательно замеряют с точностью до 0,01 мм. Образцы испытывают с помощью специальных приборов в течение определенного времени (от 1 ч до нескольких суток) в зависимости от химической стойкости исследуемых образцов. [c.138]


    Некоторые марки резин применяются в качестве химически стойкого материала для защиты металла от коррозии в условиях воздействия жидких и газообразных коррозионно-активных сред. Химическая стойкость резин зависит главным образом от свойств применяемого каучука и в некоторой степени от ингредиентов. Так. например, белая сажа повышает стойкость к соляной кислоте, но снижает стойкость к щелочам. Введение в резиновую смесь парафина, азакерита и других химически стойких мягчителей, мигрирующих на поверхность и образующих пленку, повышает химическую стойкость. Однако решающую роль играет каучук. В табл. 248—251 приведены данные но химической стойкости резин на основе каучуков, наиболее широко используемых промышленностью. [c.337]

    Эбонит 1814 создает наилучшее сцепление с металлом, но сам не обладает химической стойкостью, и поэтому его применяют в качестве подслоя для крепления мягкой резины к металлу при гуммировании деталей, испытывающих значительные механические нагрузки (ролики, валы и др.). Резинами 829 и 2566 по подслою эбонита 1814 гуммируют различные емкости (ванны, баки и др.), вулканизуемые открытым способом. [c.147]

    Хлоркаучук вследствие своей насыщенности обладает относительно высокой химической стойкостью он стоек к действию кислот, солей, щелочей и применяется для изготовления красок, антикоррозийных и огнеупорных покрытий, а также для изготовления специального клея для крепления резины к металлу. [c.60]

    Химическая стойкость резин в средах определяется по различным показателям Е зависимости от условий работы детали по изменениям веса (ГОСТ 421—59) и предела прочности н относительного удлинения при разрыве (ГОСТ 424—63), по времени появления трещин и разрыва образцов при постоянной деформации (ГОСТ 6949—63), по изменениям стойкости к многократным деформациям (ГОСТ 11805—66), ио времени до разрыва образца при постояппом напряжении и скорости ползучести (ГОСТ 11596—65) и др. [c.323]

    Современные мягкие эластичные сорта резины содержат связанной серы около 1,5—3%, считая от массы каучука. Но натуральный и некоторые синтетические каучуки (например, СКИ, СКС, СКБ, СКН) могут присоединять значительно большее количество серы. Путем присоединения к каучуку 40—60% серы получают твердый вулканизат, называемый эбонитом. Это материал, обладающий высокой твердостью, прочностью и химической стойкостью он может подвергаться обработке на станках — расточке, сверловке, шлифовке. [c.68]

    Фторкаучук Вайтон В отличается от других фторкаучуков по вышенным сопротивлением к тепловому старению и повышенной химической стойкостью. Работоспособность резин из Вайтона В сохраняется достаточно долго при температурах до 300 °С. [c.116]

    С появлением синтетических каучуков удалось разрешить многие технические проблемы, которые оставались неразрешенными при применении в резиновом производстве самых лучших сортов натурального каучука. Например, удалось получить резину повышенной масло- и бензостойкости, повышенной термической и химической стойкости. [c.34]

    Химическая стойкость резины иа основе некоторых каучуков [c.337]

    Действие агрессивных сред на резину обычно сопровождается увеличением веса, эбонит отличается меньшей скло 1ностью к набуханию и, кроме того, он обладает большей химической стойкостью, чем мягкая резина. Химическая стойкость резины и каучука определяется общими положениями, приведенными в главе XX, в отношении высокомолекулярных материалов. Следует учесть, что в результате воздействия кислорода воздуха и света резина подвержена старению. Особенно сильное разрушение резины происходит на границе раздела воздуха и жидкости. [c.471]

    Резины отличаются повышенной химической стойкостью к кислотам и щелочам [c.206]

    Торцовое уплотнение состоит из двух колец — подвижного и неподвижного, которые прижимаются друг к другу по торцовой поверхности пружиной. Торцовые уплотнения имеют следующие достоинства 1) в отличие от сальников при нормальной работе пе требуется их постоянного обслуживания 2) правильно подобранные торцовые уплотнения отличаются большой износоустойчивостью и, следовательно, долговечностью 3) обладают высокой герметичностью. Самый ответственный элемент торцового уплотне-чия —пара трения. Качество уплотнения и надежность его работы. ависят в основном от материала и качества обработки поверхностей трущихся колец. Одно из колец изготовляют не менее твердого материала — графита, другое — из кислотостойкой стали, бронзы или твердой резины. Для колец торцовых уплотнений применяют также фторопласт — 4 и керамику. Керамические кольца обладают химической стойкостью и износоустойчивостью, их недостаток— склонность к растр-ескиванию. [c.244]

    Резина, как наиболее эластичный материал, обладает хорошей сопротивляемостью к истиранию. Поэтому при равной химической стойкости с полуэбонитом или эбонитом резину для гуммирования следует применять для аппаратов с эрозионным [c.122]

    Значит, нужно искать другие вещества постараться так изменить их строение, чтобы они, оставаясь лепкими, приобрели прочность стали, эластичность резины, химическую стойкость благородных металлов. [c.13]

    Мягкая резина обладает высокой эластичностью, нозволяю-и .ей выдерживать без разрушения значительные деформации способностью смягчать удары, противостоять истиранию и другими це)п1ьши свойствами. Коэффициент расширения мягкой резины весьма значителен, ио вследствие эластичности она ирн повышении температуры не изменяет формы и не дает трещин. Коррозионные среды в связи с высокой химической стойкостью мягкой резины лишь в незначительной степени изменяют ее механические свойства. [c.439]

    Химическая стойкость материалов на основе каучуков определяется их химическим составом и строением. В качестве основы для изготовления обкладочных стандартных синтетических резин в Советском Союзе служит иатрий-бутадиеновый каучук (резины 1976, 1751, 1814). В резинах других типов (829) натрий-бутадие-иовый каучук применяется в комбинации с натуральным каучуком. [c.440]

    Физико-мехагщческие свойства наиболее распростраиеипых стандартных типов обкладочных резин, применяемых для защиты металлических конструкций от коррозии, приведены в табл. 55, а нх химическая стойкость — в табл. 56. [c.440]

    Эбониты иа основе бутадиен-стирольного каучука (СКС — сополимер бутадиена и стирола) характе)щзу10тся более высоко химической стойкостью по сравнению с резинами. Так, эбо Шты на осиове каучуков СКС-30 могут служить длительное время в 36%-иой соляной кислоте при температуре до 80° С. Кроме того, эбониты стойки в сухом и влаж1юм хлоре при температуре до [c.440]

    Свойства полимеров зависят от степени сшивания. Из сравнения трехмерной структуры с линейной структурой видно, что при трвуп рноН структуре не только повышается химическая стойкость высокомолекулярных веществ, но улучшается и ряд других свойств. Так, например, сырой каучук, который является типичным представителем высокомолекулярных веществ с цепеобразными молекулами, еше не обладает химической стойкостью, он легко разрывается при растяжении, превращается в липкую смолу при нагревании до 40-50°С, а на морозе в хрупкую массу, которую можно без труда разбить молотком. В результате вулканизации каучука происходит перестройка линейных молекул в рсхмерное состояние с образованием резины, которая обладает высокими физико-механическими сЁойст-вами и химической стойкостью. [c.32]

    В качестве рабочей жидкости в них применяют дистиллированную воду, этиловый спирт, керооин, четыреххлористый углерод, дибутилфталат и ртуть. Манометрическая жидкость должна обладать высокой химической стойкостью, малой вязкостью, малой испаряемостью, малым коэффициентом теплового расширения и быть неагрессивной по отношению к металлам, стеклу и резине. [c.31]

    Громадное значение в народном хозяйстве имеют природные и синтетические высокомолекулярные органические соединения целлюлоза, химические волокна, пластмассы, каучуки, резина, лаки, клеи, искусственная кожа и мех, пленки и др., обладающие совокупностью замечательных свойств. Они могут быть эластичными или жесткими, твердыми или мягкими, прозрачными или непрозрачными для света и даже сочетать самые неожиданные свойства прочность стали при малой плотности, эластичность с тепло- и звукоизоляцией, химическую стойкость с твердостью и т. п. Подобная универсальность свойств наряду с легкой обрабатываемостью позволяет изготовлять детали и разнообразные конструкции любой формы, величины и окраски. Без синтетических материалов сейчас немыслим дальнейший технический прогресс в самолето-, машиио- и судостроении, радио- и электротехнике, реактивной и атомной промышленности и других областях науки и техники. Из пластмасс можно изготовлять корпуса судов, автомобилей, тракторов, части станков, изоляцию. Применение пластмасс в станкостроении позволяет по-новому решать ряд конструктивных задач. Высокомолекулярные соединения надежно защищают металл, дерево и бетон от коррозии. Использование новых синтетических материалов в дополнение к сельскохозяйственному сырью позволяет значительно увеличить производство тканей, одежды, обуви, меха и различных предметов домашнего и хозяйственного обихода. [c.185]

    ХИМИЧЕСКИ СТОЙКИЕ МАТЕРИАЛЫ — материалы, применяемые в химической промышленности, машино-и приборостроении, как защитные и конструкционные материалы, устойчивые против коррозии при действии различных агрессивных веществ (кислот, щелочей, растворов солей, влажного газообразного хлора, кислорода, оксидов азота и т. д.). X. с. м. делятся па металлические и неметаллические. К металлическим X. с. м. относятся сплавы на основе железа с различными легирующими добавками, такими как хром, никель, кобальт, марганец, молибден, кремний и т. д., цветные металлы и сплавы на их основе (титан, цирконий, ниобий, тантал, молибден, ванадий, свинец, никель, алюминии). К неметаллическим X. с. м. относятся различные органические и неорганические вещества. X. с. м. неорганического происхождения представляют собой соли кремниевых и поликрем-ниевых кислот, алюмосиликаты, кальциевые силикаты, кремнезем с оксидами других элементов и др. X. с. м, органического происхождения подразделяются на природные (дерево, битумы, асфальты, графит) и искусственные (пластмассы, резина, графитопласты и др.). Наибольшую химическую стойкость имеют фторсодержащие полимеры, которые не разрушаются при действии почти всех известных агрессивных веществ и даже таких, как царская водка. Высокой химической стойкостью отличаются также графит и материалы на его основе, лаки, краски, применяемые для защиты металлических поверхностей. [c.274]

    Представителем этой группы минеральных пигментов является зеленая окись хрома, содержащая 98—99% СгзО . Плотность 4,95 aj M . Окись хрома обладает высокой химической стойкостью, применяется при окраске светоустойчивых прорезиненных тканей. Часто для окраски резины в зеленый цвет комбинируют желтые и синие пигменты. [c.178]

    Резины на основе натурального и иатринбутадиенового каучуков не обладают химической стойкостью. Хлоропреновые п нитрильные резины беизино- п маслостойкп и применяются для изготовления изделий, работающих в этих средах. [c.323]


Смотреть страницы где упоминается термин Резина, химическая стойкость: [c.69]    [c.103]    [c.357]    [c.103]    [c.806]    [c.247]    [c.103]   
Производство серной кислоты Издание 3 (1967) -- [ c.39 ]

Производство серной кислоты Издание 2 (1964) -- [ c.39 ]




ПОИСК







© 2024 chem21.info Реклама на сайте