Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стронций степени окисления

    К щелочноземельным металлам относят элементы главной подгруппы II группы периодической системы кальций Са, стронций 8г, барий Ва и радий Ка. Кроме них, в эту группу входят бериллий Ве и магний Mg. На внешнем слое атомов щелочноземельных металлов находится два я-электрона. Во всех соединениях они проявляют степень окисления +2. Активность металлов растет с увеличением атомного номера. Все эти элементы — типичные металлы, по свойствам близкие к щелочным. [c.146]


    Магний и щелочноземельные металлы — кальций, стронций, барий, радий — находятся в главной подгруппе II группы периодической системы. На внешнем энергетическом уровне атомов этих элементов находятся по два -электрона, которые легко отдаются при химических реакциях. Поэтому эти элементы проявляют только одну степень окисления, равную - -2. Металлические свойства усиливаются от магния к радию вследствие последовательного увеличения радиусов их атомов и ионов. Радий — радиоактивный элемент. [c.170]

    Изложенные представления имеют значение для решения некоторых практических задач. Так, исследование неводных растворов позволило установить на основании ПЭГ определенные закояомерности в изменении кислотно-основных свойств в зависимости от положения элементов в Периодической системе, степени окисления элементов, ионных радиусов и физико-химических свойств растворителей (рис. 15). Например, установлено, что нитраты, хлориды, иодиды, перхлораты бериллия, магния, кальция, стронция, бария и некотарые другие соединения проявляют в неводных растворах различные по силе кислотно-основные свойства. Это позволило разработать новые методы дифференцированного титрования многокомпонентных смесей указанных солей [238, 325, 549] (рис. 16, 17). [c.160]

    Определение ионов металлов. Благодаря соответствующему выбору фонового электролита, pH и лигандов практически любой металл может быть восстановлен на ртутном капающем электроде до амальгамы или до растворимого иона с более низкой степенью окисления. Во многих случаях получают полярографические волны, пригодные для количественного определения этих веществ. Такие двухвалентные катионы, как кадмий, кобальт, медь, свинец, марганец, никель, олово и цинк, можно определить во многих различных комплексующих и некомплексующих средах. Ионы щелочно-земельных элементов — бария, кальция, магния и стронция — дают хорошо выраженные полярографические волны при приблизительно —2,0 В относительно Нас. КЭ в растворах, содержащих иодид тетраэтиламмония в качестве фонового электролита. Цезий, литий, калий, рубидий и натрий восстанавливаются между —2,1 и —2,3 В отн. Нас. КЭ в водной и спиртовой среде гидроксида тетраалкиламмония. Опубликованы данные полярографического поведения трехзарядных ионов алюминия, висмута, хрома, европия, галлия, золота, индия, железа, самария, урана, ванадия и иттербия в различных растворах фоновых электролитов. [c.457]

    Некоторым атомам обычно приписываются постоянные степени окисления. Например, степень окислеиия фтора в соединениях всегда равна —1, лития, натрия, калия, рубидия, цезия и франция +1, магния, кальция, стронция, бария и цинка +2, алюминия - -3. [c.58]


    Элементы бериллий Ве, магний М , кальций Са, стронций 8г, барий Ва и радий Ка составляют ПА-группу Периодической системы Д.И.Менделеева. Элементы кальций, стронций, барий и радий имеют групповое название — щелочноземельные металлы. Валентный уровень атомов элементов ПА-группы содержит по два электрона п8 У, характерная степень окисления этих элементов -(-П. Металлические свойства элементов ПА-группы выражены несколько слабее, чем у элементов 1А-группы. [c.114]

    И ЭТО заключение действительно подтверждается разительным образом ВО всей совокупности свойств элементов, принадлежащих к четным и нечетным строкам или рядам. Элементы четных рядов образуют наиболее энергические основания, и притом основная способность для них возрастает в данной группе по мере увеличения атомного веса. Известно, что цезий более электроположителен и образует основание более энергическое, чем рубидий и калий, как показал это Бунзен в своих исследованиях этого металла относительно бария, стронция и кальция это известно каждому по давнему знакомству с соединениями этих элементов. То же повторяется и в такой же мере при переходе в четвертой группе от иттрия к церию, цирконию и титану, как видно на таблице, а также при переходе от урана к вольфраму, молибдену и хрому. Эти металлы четных рядов характеризуются еще и тем, что для них неизвестно ни одного металлоорганического соединения, а также ни одного водородистого соединения, тогда как металлоорганические соединения известны почти для всех элементов, расположенных в нечетных рядах. Такое различие элементов четных и нечетных рядов основывается на следующем соображении элементы нечетных рядов, относительно ближайших элементов той же группы, но принадлежащих к четным рядам, оказываются более кислотными, если можно так [246] выразиться, а именно, натрий и магпий образуют основания менее энергические, чем калий и кальций серебро и кадмий дают основания еще менее энергические, чем цезий и барий. В элементах нечетных рядов основные способности различаются гораздо менее при возрастании атомного веса, чем в элементах четных рядов. Окись ртути, правда, вытесняет окись магния из растворов, окись талия, конечно, образует основание более энергичное, чем окись индия и алюминия, но все же это различие в основных свойствах не столь резко, как между барием и кальцием, цезием и калием. Это особенно справедливо для элементов последних групп из нечетных рядов. Кислоты, образованные фосфором, мышьяком и сурьмою, а также серою, селеном и теллуром, весьма сходны между собою при одинаковости состава только прочность высших степеней окисления с возрастанием атомного веса здесь, как и во всех других рядах, уменьшается, а кислотный характер изменяется весьма мало. [c.757]

    Решение. Элемент стронций находится в главной подгруппе И группы следовательно, в соединениях он имеет одну степень окисления +2. Галлий находится в главной подгруппе П1 группы следовательно, в соединениях он имеет степень окисления + 3. [c.6]

    Металлы, содержащиеся на поверхности катализатора, практически не влияют на скорость выжига коксовых отложений в диффузионной области и существенно ускоряют регенерацию катализатора в кинетической области. Исследованные нами металлы по степени убывания их воздействия на скорость окисления кокса в кинетической области располагаются в следующий ряд хром> >ванадий>литий>молибден, медь, натрий>железо>кобальт, никель>бериллий, магний, кальций, стронций>калий>цезий> >свинец. [c.180]

    Тяжелые металлы, являющиеся сильными ядами катализатора- крекинга (например, никель), и щелочноземельные металлы весьма умеренно ускоряют регенерацию катализатора. В присутствии щелочных металлов скорость горения кокса значительно возрастает (причем обратно пропорционально их молекулярному весу). Так, при содержании в катализаторе 1,0—1,5 вес. % лития или натрия продолжительность регенерации сокращается в 2,0—2,5 раза. Наибольшее ускорение регенерации достигается при внесении металлов, активирующих в небольших концентрациях катализатор крекинга (хром, ванадий, молибден и др.). По степени убывания воздействия на скорость окисления кокса в кинетической области испытанные нами металлы можно расположить в следующий ряд хром > ванадий > литий > молибден, медь > натрий > железо, кобальт > никель, бериллий, магний, кальций, стронций > калий > цезий > свинец. [c.43]

    К щелочноземельным металлам относят кальций (Са), стронций (8г), барий (Ва) и радий (Ка). Кроме них, главную подгруппу И группы входят бериллий (Ве) и магний (Mg). Конфигурация внешнего электронного слоя этих элементов — пз , поэтому для них характерна степень окисления +2. [c.256]

    Большинство соединений катионов второй аналитической группы бесцветны и мало растворимы в воде. Окрашенными являются хроматы бария, стронция, кальция и висмута (желтые), соединения марганца высшей степени окисления (четырехвалентного — бурые, шестивалентного — зеленые и семивалентного — фиолетовые), соли железа (П1), хрома (III) и хрома (VI), сульфиды железа (II) и железа (Ш), йодид, сульфид и роданид висмута. [c.49]


    Т. щелочных металлов раств. в разб. к-тах, водой гидролизуются. Остальные Т. не раств. в воде и разб. к-тах, при нагр. разлагаются конц. H2SO4. Т. имеют довольно высокие т-ры плавления, являются диэлектриками, большинство из них отличается высокой диэлектрич. проницаемостью. Т. металлов в степенях окисления -ь2 и +3, а также многие двойные Т.-сегнетоэлектрики. Важнейшие из ийх-бария титанат, свинца титанат, стронция титанат. [c.596]

    Химическая экология природных вод. Химический состав и классификация природных вод. Макрокомпоненты хлорид-, сульфат-, карбо-нат- и гидрокарбонат-ионы, катионы натрия, калия, магния, кальция. Ионы кремния, железа, алюминия, фосфора, азота в разных степенях окисления, органические вещества в природных водах. Микрокомноненты ионы лития, стронция, меди, серебра, хрома, марганца, бромид-, иодид-ионы и их способность к комилексообразовапию. Эколого-химические особенности загрязнения гидросферы. Металлы как загрязняющие вещества источники ностунления в воду, токсические эффекты, химическое состояние. Органические соединения - загрязнители вод разных типов хлорорганические, фосфорорганические соединения. Особенности нефтяного загрязнения. Детергенты в природных водах. Коллоидные ПАВ и их влияние на загрязнение природной воды. [c.4]

    В русской номенклатуре оксиды называются окислами. Окислы элементов, проявляющих в соединениях постоянную степень окисления, называют окисями например, ЫгО — окись лития, 5г0—окись стронция, А12О3 — окись алюминия. [c.10]

    В соединениях проявляет степень окисления +2. По химическим свойствам самого металла и многих его соединений Б. сходен с кальцием и особенно стронцием и радием, однако по химической активности превосходит их быстро окисляется на воздухе, образуя на поверхности пленку, содержащую оксид, пероксид и нитрид Б. При нагревании на воздухе легко воспламеняется и сгорает красноватым пламенем энергичнее кальция разлагает воду с выделением водорода и образованием гидроксида Ва(0Н)2. С кислородом образует оксид ВаО, с водородом— гидрид ВаНг, с азотом — нитрид ВазЫг при 260—600 °С, с углеродом — карбид ВаСг. С углеродом и азотом Б. образует цианид Ba( N)2, с галогенами — галогениды. При взаимодействии Б. с безводным хлоридом Б. Ba l2 при 1050 °С образуется хлорид ВаС1. См. также приложение. [c.133]

    Приыер З.Какие степени окисления в соединениях имеют стронций и галлий  [c.6]

    Металлы II группы. Магний и щелочноземельные металлы — кальций, стронций, барий — относятся к главной подгруппе П группы периодической системы. Во внешнем электрополе слоя атомов этих элементов находится по два электрона, которые легко могут быть потеряны в химических реакциях. Поэтому в своих соединениях Mg, Са, Ва и Sr проявляют степень окисленности, равную -f2. Они являются сильными восстановителями, причем восстановительная активность увеличивается с возрастанием атомного номера от Mg к Ва. В свободном виде эти металлы представляют собой серебристо-белые легкие металлы. [c.51]

    СТРОНЦИЙ м. 1. Sr (Strontium), химический элемент с порядковым номером 38, включающий 23 известных изотопа с массовыми числа.ми 77-99 (ато.мная масса природной с.меси 87,62) и имеющий типичную степень окисления -(- II. 2. Sr, простое вещество, серебристо-белый. металл применяется как добавка к медным и алюминиевым сплавам, как геттер, изотоп как источник Р-излучения. [c.418]

    Термомагнитная обработка в постоянном и переменном магнитных полях увеличивает адгезию ферропластов к металлам. Зависимость напряжения, отслаивания покрытий на основе, полиэтилена низкой плотности, содержащего 2% (мае.) феррита стронция, от напряженности магнитного поля имеет максимум при Н = 100 200 кА/м (рис. 3.12). Повышение адгезионной прочности после обработки в магнитном поле связывают с ориентацией макромолекул, а также с увеличением смачиваемости субстрата [35]. Установлено, что термомагнитная обработка приводит к увеличению содержания карбонильных групп в полиэтилене. Оптическая плотность полосы поглощения 1720 см 1, характеризующая степень окисления полиэтилена, изменяется соответственно ажезионной прочности (рис. 3.12) в зависимости от напряженности магнитного поля. Таким образом, увеличение адгезионной прочности ферропластовых покрытий к металлам обусловлено, по-видимому, окислением полимера под действием магнитного поля. [c.90]

    При выводе формул Берцелиус придавал большое значение аналогиям. Особенно наглядно можно это продемонстрировать на примере окислов металлов, формулу которых он выражал как Ме02. Изучая различные степени окисления металлов, Берцелиус пришел к выводу, что у ряда элементов наиболее энергичными основаниями являются окислы типа МеОг. Формулы подобного типа были приписаны и другим сильным основаниям, хотя достаточных данных для такого выбора не было. Сюда были причислены окислы магния, кальция, стронция. [c.79]

    ПО СВОИМ свойствам то место в ряду элементов, какое [свойственно] указывает на его действительные аналогии гораздо скорее, чем при допущении нынешнего пая. При ныне шнем) пае церия 92, его должно поместить между 8г = 86,7 и Zr = 90 но [Зг] первый образует окис1. ЗгО, а второй [Зг]2гО [церий же] — оба они очень прочны и существуют в отдельности, а потому окисел Се О должен бы быть прочным. [Правда это]Для церия дей ствительно предиолагают сущ ествование окиси Се О , но ее в отдельности при всех попытках получения не достали, окисление идет до [форм] Се 0 =Се0 Се 0 , но не далее, и эта степень окисления оказывается солеобразною, дающею хорошо образуемые простые и особенно двойные соли. [А так как допуская пай Се =92] Удельный вес стронция 2,5 [4,] Се =5,5, Zт = 4,1 [опять] таюке показывает, что место церия между Зг и Zг не соответствует его свойствам. Если же придать Се пай 138, то он поместится после Ва = 137. в том пространстве, в котором (от Ва = 137 до [В] Та = 182) ныне нет известных элементов , и по близости к Ва понятны станут основные свойства окиси церия. [Оп окажется] Та ф)орма окиси которой нын прид ают формулу Се 0 , превратится в СсО , и состав столь ныне необычайных соединений высшей степени окисления церия окажется соответственным с соед инениями Zr02, ЗпО [и т. п. ] Т10 . Место церия в системе элементов действительно тогда будет [следующее] видно из прилагаемой таблицы, [а положен] церий тогда окажется в таком же отношении к Сб = 133 и Ва=137, как [Т1] 2г=90 к ВЬ = 85,4 и Зг = 87,6, или как Т1 = 50 к К = 39 и Са = 40, что видно и по изменению плотностей. [c.131]


Смотреть страницы где упоминается термин Стронций степени окисления: [c.638]    [c.385]    [c.374]    [c.216]    [c.34]    [c.397]    [c.252]    [c.163]    [c.241]    [c.13]    [c.10]    [c.168]    [c.475]   
Справочник по общей и неорганической химии (1997) -- [ c.9 ]




ПОИСК





Смотрите так же термины и статьи:

Окисления степень

Стронций



© 2024 chem21.info Реклама на сайте