Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические реакции протекания

    Физическая адсорбция вызывается силами молекулярного взаимодействия, к числу которых относятся силы взаимодействия постоянных и индуцированных диполей, а также силы квадрупольного притяжения. Хемосорбция связана с перераспределением электронов взаимодействующих между собой газа и твердого тела и с последующим образованием химических связей. Физическая адсорбция подобна конденсации паров с образованием жидкостей или процессу сжижения, а хемосорбция может рассматриваться как химическая реакция, протекание которой ограничено поверхностным слоем адсорбата. [c.401]


    Хемосорбция обусловлена перераспределением электронов взаимодействующих между собой газа и твердого тела с последующим образованием химических связей. Иными словами, физическая адсорбция подобна конденсации паров с образованием жидкости или процессу сжижения газов, а хемосорбция может рассматриваться как химическая реакция, протекание которой ограничено поверхностным слоем адсорбента. [c.264]

    Механизмы реакций обмена. Изучение реакций обмена открыло для химии новый громадный класс химических реакций, протекание которых не связано с изменением состава компонентов системы. В основе всех реакций обмена действительно лежат химические процессы, так как переход атомов из одного соединения в другое связан с разрывом и образованием химических связей. [c.133]

    Для количественного анализа вещества можно использовать также химические реакции, протекание которых сопровождается изменением физических свойств анализируемого раствора, например изменением его цвета, интенсивности окраски, величины электропроводности и т. п. Измеряя электропроводность какого-либо электролита, изменяющуюся в результате взаимодействия его с другим веществом, можно определить количество этого вещества в растворе. Например, электропроводность баритовой воды изменяется в процессе поглощения ею двуокиси углерода. На этом свойстве основан метод определения СОа. Если через баритовую воду пропускать газ, содержащий СО , и одновременно измерять ее электропроводность, то можно найти количество СО , поглощенное баритовой водой, и рассчитать процентное содержание двуокиси углерода в исследуемом газе. [c.20]

    Как известно, при прохождении электрического тока через растворы электролитов на электродах происходит разряд ионов и протекают связанные с этим химические реакции. Протекание процесса электролиза определяется переносом электрического тока в жидкости и условиями разряда присутствующих в растворе ионов электролита. Общие вопросы теории электролиза освещены в ряде работ [c.31]

    Процессы с участием электронов и других заряженных частиц привлекают внимание многих исследователей. Особенно интересны химические реакции, протекание которых в твердой фазе можно объяснить механизмом туннельного переноса. [c.63]

    Массопередача при наличии химической реакции. Протекание химической реакции в двухфазной системе оказывает влияние на установление равновесия и распределение компонента между фазами, а следовательно, и на движущую силу процесса. Кроме того, химическая реакция существенно влияет на величину коэффициента массопередачи. Протекание химической реакции изменяет также поле концентраций в объеме аппарата. [c.81]


    Таким образом, основным объектом неравновесной химической кинетики являются частицы (атомы, молекулы, ионы) на определенных квантовых уровнях (1.90). Учитывается реальная структура уровней внутреннего возбуждения, конкуренция процессов образования и гибели возбужденных частиц в результате физических процессов и химических реакций, протекание реакций по большому числу параллельных каналов. Имеется возможность использования реальных зависимостей сечений процессов от энергии [5, 29, 71, 81]. [c.31]

    СЮ . Другими соединениями хлора в положительных степенях окисления можно пренебречь. В газовой фазе при тех значениях pH раствора в реакторе, которые реализовывались в наших экспериментах, необходимо рассматривать только СЬ. В таблице перечислены обратимые химические реакции, включенные в модель. В модель включены также химические реакции, протекание которых контролируется кинетически. [c.83]

    Существуют процессы, идущие самопроизвольно лишь в одном направлении, заканчивающиеся наступлением равновесия. Помимо самопроизвольного перехода теплоты от горячего тела к холодному, к таким процессам относятся расширение газа в пустоту, свободное падение тела, диффузия, химические реакции. Протекание их в обратном направлении само собой, без воздействия извне, невозможно. Так, известно, что реакция Н2 + С12Ч 2НС1 (г.) сопровождается выделением теплоты, которую можно перенести при температуре системы в сосуд с водой (термостат). Если воды достаточно много, то температура ее почти не изменится. [c.28]

    Силы, действующие на поверхности твердого тела, ненасыщены. Поэтому всякий раз, когда свежая поверхность подвергается действию газа, на ней создается более высокая концентрация молекул газа, чем в объеме собственно газовой фазы. Такое преимущественное концентрирование молекул на поверхности называется адсорбцией. Прочность связи молекул адсорбата с поверхностью адсорбента, а также величина адсорбции могут сильно меняться от системы к системе. Процессы адсорбции можно разделить на два основных типа физическую адсорбцию и хемосорбцию. Физическая адсорбция вызывается силами молекулярного взаимодействия, к которым относятся силы взаимодействия постоянных и индуцированных диполей, а также силы квадрупольного притяжения. Хемосорбция обусловлена перераспределением электронов взаимодействующих между собой газа и твердого тела с последующим образованием химических связей. Физическая адсорбция подобна конденсации паров с образованием жидкости или процессу сжижения газов, а хемосорбция может рассматриваться как химическая реакция, протекание которой ограничено поверхностным слоем адсорбента, Типы адсорбции различают по нескольким критериям 1) по теплотам адсорбции. Количество выделившейся в процессе физической адсорбции теплоты, отнесенное к одному молю адсорбированного вещества, обычно изменяется в пределах 8—40 кДж. Как правило, теплота хемосорбции превышает 80 кДж/моль 2) по скорости протекания процесса. Поскольку физическая адсорбция подобна процессу сжижения газа, то она не требует активации и протекает очень быстро. Хемосорбция же, аналогично большинству хи- [c.425]

    Физико-химические методы анализа. Для анализа веществ широко используются химические реакции, протекание которых сопровождается изменением физических свойств анализируемой системы, например ее цвете, интенсивности окраски, прозрачности, флуоресценции, величины ЭЛСК7 ро- и теплопроводности, и т, д. [c.17]

    Химические превращения, протекающие в полимерах при действии на них лучистой энергии, уже давно интересовали человека. До последнего времени из различных видов излучений внимание исследователей привлекал главным образом свет. Та роль, которую играет свет в биохимических превращениях полимеров, а также в процессах их деструкции или старения, определяет необходимость того, что в будущем, как это было и в прошлом, большое число исследований в области полимерной химии будет по-прежнему посвящено исследованию фотохимических проблем. Преобладающее значение при этом приобретают работы по использованию световых воздействий в определенных контролируемых условиях для модификации свойств полимеров. Однако в последнее десятилетие еще более интенсивно, чем фотохимические превращения полимеров, исследовались вопросы взаимодействия полимерных веществ с ионизирующими излучениями (излучениями высокой энергии). Развитие исследований в этой области в большой степени связано с созданием промышленной ядерной технологии и новых более совершенных электронных и ионных ускорителей. Но оно было вызвано также и тем ожидаемым многообразием химических реакций, протекание которых должно стать возможным под действием излучений высокой энергии. Одновременное присутствие электронов, ионов, свободных радикалов и молекул в возбужденных и термолизованных состояниях явилось причиной появления многочисленных гипотез, имеющих целью объяснение наблюдаемых радиационно-химических превращений. Все более сложные экспериментальные исследования обеспечили получение данных, которые позволяли проверять и изменять эти гипотезы. Как будет видно из дальнейшего рассмотрения, ни один из предложенных механизмов нельзя считать однозначно доказанным. [c.95]


    Особое значение имеют электродные процессы с промежуточной химической стадией, протекающей между двумя электрохимическими реакциями. Такие процессы символически обозначаются буквами ЕСЕ, показывающими последовательность протекания электрохимических (Е) и химической (С) реакций [2]. Если скорость химической стадии достаточно высока, то эта стадия никак не влияет на кинетику процесса в целом, однако при замедленной промежуточной химической реакции протекание электродного процесса в большей или меньшей мере ограничивается лишь первой электрохимической реакцией, поэтому среди образующихся продуктов содержатся по меньшей мере два вещества, отвечающих полному и частичному протеканию электродного процесса. В органической электрохимии такой промежуточной реакцией чаще всего является реакция протонизации первично возникающего продукта — обычно анион-радикала или свободного радикала последний образуется при переносе электрона на катионную (обычно протонировапную) форму деполяризатора. На полярограммах, отвечающих таким процессам в апротонной среде, первая волна, как правило, соответствует переносу одного электрона, последующие волны — дальнейшему восстановлению образовавшегося на первой стадии продукта. При введении же в такой раствор доноров протонов высота первой волны обычно возрастает вследствие появления кинетической составляющей тока, обусловленного дальнейшим восстановлением протонированного первичного продукта (см., например, [3—5]). Величина этого дополнительного (по сравнению с уровнем диффузионной одноэлектронной волны) кинетического тока определяется скоростью протонизации первичного продукта с увеличением концентрации или силы доноров протонов высота кинетического тока возрастает. [c.139]

    Между этими двумя типами адсорбции существует совершенно четкое различие. Физическая адсорбция вызывается силами молекулярного взаимодействия, к числу которых относятся [1] силы взаимодействия постоянных и индуцированных диполей, а также силы квадрунольного притяжения. Поэтому физическую адсорбцию часто называют также вандерваальсовой адсорбцией. В то же время хемосорбция связана с нерераснределением электронов взаимодействующих между собой газа и твердого тела и с последующим образованием химических связей. Иными словами, физическая адсорбция подобна конденсации наров с образованием жидкости или процессу сжижения газов, а хемосорбция может рассматриваться как химическая реакция, протекание которой ограничено поверхностным слоем адсорбента. Из этих определений следует, что по мере изменения наших представлений о сущности химической связи будет соответственно меняться и представление о хемосорбции. [c.20]


Смотреть страницы где упоминается термин Химические реакции протекания: [c.401]    [c.81]    [c.410]    [c.231]    [c.21]   
Справочник по общей и неорганической химии (1997) -- [ c.55 ]




ПОИСК







© 2025 chem21.info Реклама на сайте