Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические источники электрической электроды

    Если металлические части двух электродов 1 и 2 с различными электродными потенциалами (ф1 ф фа) соединить электронным (металлическим) проводником электрического тока, а их растворы соединить ионным проводником (электролитическим ключом), то по проводнику начнет двигаться поток электрических зарядов (заряженных частиц), а на электродах будут происходить самопроизвольные окислительно-восстановительные реакции. Такая электродная пара называется гальваническим элементом (химическим источником электрического тока). [c.188]


    Любая электрохимическая цепь в принципе может служить источником электрического тока. При соединении электродов через проводник первого рода электроны начинают двигаться от отрицательного полюса (анода) к положительному (катоду). Одновременно на фазовых границах электрод — электролит, обладающих ионной проводимостью, происходят электрохимические реакции, энергия которых и служит источником электрического тока, протекающего во внешней цепи. Системы с малой электрической емкостью, малой скоростью и необратимостью химических реакций не могут быть практически использованы для получения электрического тока лишь немногие цепи служат химическим источником электрической энергии. [c.481]

    Аккумуляторами могут служить только такие химические источники электрического тока, основные процессы в которых протекают обратимо. Вещества, израсходованные в процессе протекания реакции, дающей электрическую энергию, должны регенерироваться при пропускании через разряженный аккумулятор электрического тока необходимого напряжения от внешнего источника электрической энергии. Направление тока внутри аккумулятора при заряде будет обратным тому, которое имелось при разряде на отрицательном электроде реакция окисления заменяется реакцией восстановления, а на положительном — реакция восстановления за- [c.484]

    За счет протекания этих реакций элемент Якоби вырабатывает электрический ток. В химических источниках тока электрод, на котором протекает электрохимическое окисление, называется анодом, а электрод, на котором происходит электрохимическое восстановление, называется катодом. [c.154]

    Возникающий в цепи поток электронов — электрический ток — может быть использован для совершения работы. Таким образом, электрическая энергия гальванического элемента является следствием соответствующих электрохимических процессов, протекающих на обоих электродах. При разомкнутой внешней цепи электрохимические процессы (с отдачей и приобретением частицами вещества электронов) также протекают, но так как ток при этом не отбирается (/ = 0), то в системе устанавливается динамическое равновесие. Разность равновесных потенциалов при выключенной внешней цепи называется электродвижущей силой (э.д.с.) химического источника электрической энергии и обозначается через Е [c.138]

    Химические источники электрической энергии приобрели широкое применение в современной технике в качестве автономных источников электроэнергии. Ежегодно в мире выпускают более 10 млрд. штук гальванических элементов и аккумуляторов. Для их изготовления расходуется большое количество свинца, цинка, никеля, кадмия, серебра и их соединений. В частности, на электроды свинцовых аккумуляторов расходуется больше половины мирового производства свинца. [c.377]


    Химическими источниками электрической энергии называются устройства, превращающие химическую энергию какой-либо реакции в электрическую. Для такого превращения необходимо, чтобы процессы, связанные с изменением зарядов у электродов (т. е. окислительный и восстановительный процессы), были разделены пространственно, и электроны проходили через внешнюю цепь. [c.462]

    Потенциалы электродов при работе химического источника электрической энергии (разряде или заряде) отличаются от потенциалов, измеренных при разомкнутой внешней цепи, на величину, называемую э.д.с. поляризации  [c.465]

    В электрохимических системах (электролитных ваннах или химических источниках электрической энергии — элементах) особое значение приобретают электродные электрохимические реакции, протекающие с поглощением либо отдачей молекулами, атомами или ионами электронов. Именно контакт находящихся в электролите частиц реагирующего вещества с поверхностью электрода (электронным проводником) определяет собой особенности превращения электрической энергии в химическую и обратно. Уже отмечалось, что по этой причине механизм электрохимических процессов существенно отличается от обычного химического превращения материи, когда между реагирующими частицами вещества в растворе (расплаве) имеется непосредственный контакт. [c.23]

    Не меньшее влияние поляризация оказывает на работу химических источников электрической энергии — гальванических элементов и аккумуляторов. Водород на положительном электроде также выделяется с заметным перенапряжением, которое зависит от величины отбираемого тока, свойств полярной жидкости, материала электрода и состояния его поверхности. Наиболее часто поэтому для источников электрической энергии используют такие системы, в которых на положительных электродах вместо разряда ионов гидроксония протекает процесс восстановления какого-либо окислителя. В кислотном, свинцовом аккумуляторе [c.274]

    При работе любого химического источника тока протекает суммарная химическая реакция взаимодействия окислителя (активное вещество положительного электрода) с восстановителем (активное вещество отрицательного электрода). Максимальная работа, получаемая при действии химического источника электрической энергии, равна убыли изобарного потенциала для этой реакции, т. е. [c.490]

    Рассматривая разлагатель как химический источник электрической энергии, т. е. как гальванический элемент, казалось бы легко использовать его энергию, если включить его в электрическую цепь источника 2 последовательно, как показано на схеме II, т. е. соединить катод гальванического элемента (следует помнить, что в гальваническом элементе катодом называют положительный электрод, на котором происходит разряд катионов, в то время как в электролитической ванне катодом называют отрицательный электрод) с отрицательным полюсом источника электричества 2. [c.334]

    Если пространственно отделить окислитель от восстановителя и затем посредством электродов, опущенных в указанные растворы, и металлической проволоки, соединяющей электроды, замкнуть цепь, то по проволоке потечет электрический ток (поток электронов). При этом электроны движутся по внешней цепи в направлении от восстановителя к окислителю. В зоне окислителя происходит восстановление, одновременно в зоне восстановителя—окисление. На этом принципе построен гальванический элемент, представляющий собой первичный химический источник электрического тока, в котором химическая энергия выделяется по мере течения реакции, возникающей между окислителем и восстановителем, превращается непосредственно в электрическую энергию. [c.184]

    Как и в случае химического источника электрической энергии, электрод, на котором происходит восстановление, называется катодом электрод, на котором происходит окисление, называется анодом. Но при электролизе катод заряжен отрицательно, а анод — положительно, т. е. распределение знаков заряда электродов противоположно тому, которое имеется прн работе гальванического элемента. Причина этого заключается в том, что процессы, протекающие при электролизе, в принципе обратны процессам, идущим при работе гальванического элемента. При электролизе химическая реакция осуществляется за счет энергии электрического тока, подводимой извне, в то время как при работе гальванического элемента энергия самопроизвольно протекающей в нем химической реакции превращается в электрическую энергию. [c.285]

    Последовательное расположение металлов по значению их стандартных потенциалов называется электрохимическим рядом напряжений. Более отрицательные значения потенциалов соответствуют большей способности металлов вступать в химические реакции. Чем дальше один от другого в ряду напряжений расположены металлы, тем большую ЭДС можно от них получить. При замыкании внешней цепи электродов возникает электрический ток. На этом основан принцип действия химических источников электрической энергии — гальванических элементов. [c.13]


    Роль поляризационных явлений при осуществлении электрохимических процессов значительна. Величина и вид перенапряжения определяют многие характеристики процессов, например, структуру металлических катодных осадков, скорость коррозии металлов и др. Напряжение на клеммах электролизеров и химических источников электрического тока, а следовательно и энергетические характеристики этих систем, определяются значениями потенциалов поляризованных электродов. [c.310]

    Итак, направление процессов, на электродах гальванической пары зависит от прилагаемого извне встречного напряжения. Если оно меньше Е, то гальваническая пара выступает в роли химического источника электрической энергии, т. е. гальванического элемента в ней протекают самопроизвольные окислительновосстановительные процессы за счет которых она производит электрическую работу. А если встречное напряжение превосходит Е, то в гальванической паре протекают окислительно-восстановительные процессы, обратные процессам, идущим в гальваническом элементе, и при этом она потребляет энергию от источника электрического тока, что указывает на несамопроизвольность идущих в ней процессов. [c.249]

    Химические источники электрической энергии бывают одноразового и многократного действия. ХИЭЭ одноразового использования называются первичными элементами, а многократного действия вторичными элементами или аккумуляторами. ИногДа первичные элементы называют просто элементами или гальваническими элементами . Аккумуляторами могут служить только такие химические источники электрической энергии, основные процессы в которых протекают обратимо. Вещества, израсходованные в процессе протекания реакции, дающей электрическую энергию, должны регенерироваться при пропускании через разряженный аккумулятор электрического тока от постороннего источника электрической энергии. Направление тока внутри аккумулятора при заряде будет обратным имевшемуся при разряде, на отрицательном электроде реакция окисления заменяется реакцией восстановления, а на положительном электроде реакция восстановления заменяется реакцией окисления. Таким образом, в аккумуляторах запас химической энергии, истраченной на получение электричес1 ой энергии при разряде, возобновляется при заряде. Так как напряжение одного отдельного первичного элемента или аккумулятора очень невелико — они в большинстве случаев применяются последовательно соединенными по несколько штук. В таком виде ХИЭЭ называют батареей . [c.464]

    Применение системы Ад201К0Н1гп для создания химического источника электрической энергии было предложено еще в XIX в., однако только в 1943 г. Андре во Франции после длительных исследований была разработана практически пригодная конструкция аккумулятора. Основные трудности заключались в создании обратимого цинкового электрода, сохраняющего свои размеры и форму при многократных зарядах и разрядах. [c.542]

    Энергия элемента, освобождающаяся при протекании химической реакции, является источником возникновения э. д. с. в цепи. В химических источниках электрической энергии — элементах — электрод, отдающий во внешнюю цепь электроны, является отрицательным полюсом элек- [c.19]

    Химическими источниками электрической энергии называются электрохимические системы, превращающие химическую энергию какой-либо реакции в электрическую. Примером ХИЭЭ может служить медно-цинковый элемент, предложенный Даниэлем в 1836 г. и усовершенствованный Якоби. В этом элементе медный электрод, погруженный в раствор сульфата меди, отделен пористой диафрагмой от цинкового, погруженного в раствор сульфата цинка  [c.418]

    Химические источники электрической энергии бывают одно- и многократного использования. ХИЭЭ однократного использования называются первичными элементами, а многократного — вторичными элементами или аккумуляторами (чаще первичные элементы называют просто элементами). Аккумуляторами могут служить такие ХИЭЭ, в которых вещества, израсходованные в процессе протекания реакции, дающей электрическую энергию, регенерируются при пропускании электрического тока в обратном направлении от постороннего источника электрической энергии. При заряде на отрицательном электроде протекает реакция восстановления и он является катодом. Соответственно на положительном электроде при заряде идет анодная реакция окисления и при разряде катодная реакция восстановления. [c.419]

    Э. д. с. и напряжение при разряде [5]. Важными характеристиками ХИЭЭ являются их электродвижущая сила, т. е. разность потенциалов электродов, измеренная при отсутствии тока во внешней цепи, и напряжение химического источника электрической энергии при его работе, т. е. при замкнутой внешней цепи. Различают начальное, конечное и среднее напряжения при разряде (или заряде). [c.419]

    В химических источниках электрической энергии (ХИЭЭ) электроды разделяют пористыми перегородками, которые обычно называют сепараторами. В некоторых типах ХИЭЭ разделителями служат мембраны. Отличие сепараторов от диафрагм состоит в том, что первые только предохраняют от создания электрического контакта между электродами, тогда как вторые должны разделять продукты электролиза. В ряде ХИЭЭ вместо пористых перегородок применяют такие разделители, как палочки, шнуры, сетки, перфорированный волнистый винипласт и т. п. [c.6]

    Электрохимическая система, производящая электрическую энергию за счет протекающих в ней химических превращений, называется химическим источником тока или гальваническим элементом (рис, 2, б). Здесь электрод, пос1>1лающий электроны во внешнюю цепь, называется отрицательным электродом или отрицательным полюсом элемента. Электрод, принимающий электроны из внешней цепи, называется положительным электродом или положительным полюсом элемента. [c.13]

    Приложение законов термодинамики к электрохимическим системам позволяет установить количественную связь между электрической энергией электрохимических систем и изменением химической эпергип протекающих в них токообразующих химических реакций. Правильно определяя химическую энергию токообразующих реакций как источник электрической энергии электрохимических систем, термодинамика, являясь наукой о наиболее общих закономерностях, не в состоянии показать, какими путями, по какому механизму химическая энергия превращается в электрическую, из чего слагается э.д.с., что собой представляет потенциал электрода. [c.23]

    Любая электрохимическая цепь в принципе может служить источником электрического тока. При соединении крайних электродов металлическим проводником вследствие наличия э.д.с. по проводнику начинают двигаться электроны от электрода с более отрицательным потенциалом к электроду с менее отрицательным потенциалом. Одновременно на поверхности электродов происходят электрохимические реакции, энергия которых служит источником электрической энергии, выделяющейся во внешней цепи. По разным причинам (малая электрическая емкость, малая скорость и необратимость химических реакций, физические изменения электродов при эксплуатации и т. д.) ббль" шая часть цепей не может быть практически использована для получения электрического тока, и лишь немногие имеют прикладное значение в качестве химических источников тока. [c.598]

    При электролизе и эксплуатации химических источников тока через электрохимические системы протекает электрический ток. При этом равновесное состояние Ох + ге" Нес , существующее на электроде в отсутствие внешнего тока, нарушается. В зависимости от направления тока электродная реакция может идти в катодном Ох + + 26 Нес или анодном Нес1-> Ох + ге направлениях. Мерой скорости электрохимической реакции является плотность тока — сила тока, отнесенная к единице площади поверхности электрода. Если в уравнении (162.3) массу вещества, участвующего в реакции, выразить в г-ионах, то скорость реакции будет [c.498]

    Активными называются вещества, в результате превращения которых в процессе реакции получается электрическая энергия. Обычно активным веществом гальванического элемента является отрицательно заряженный электрод — анод, па котором идет реакция окисления. На положительно заряженном электроде — катоде — идет реакция восстановления. При работе химического источника тока отрицательно заряженные частицы (анионы) переме1даются к аноду, а положительно заряженные ионы (катионы) движутся к катоду (рис. 5). [c.35]


Смотреть страницы где упоминается термин Химические источники электрической электроды: [c.157]    [c.111]    [c.193]    [c.203]    [c.212]    [c.381]    [c.595]    [c.517]   
Прикладная электрохимия Издание 3 (1974) -- [ c.425 , c.429 ]




ПОИСК





Смотрите так же термины и статьи:

Электрический ток, источники



© 2025 chem21.info Реклама на сайте