Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение вольфрама гравиметрическое

    Ионные ассоциаты используют сравнительно широко, причем их образует У(У1). Реагенты, использующиеся для фотометрического определения вольфрама (метиловый фиолетовый, родамин С, метиленовый голубой) достаточно чувствительны, но мало избирательны, перед определением вольфрам нужно обязательно отделять. Реагенты, используемые для гравиметрического определения вольфрама ([5-нафтохинолин, риванол, таннин, цинхонин) селективно осаждают вольфрам, однако продукты реакции количественно не охарактеризованы, механизм взаимодействия не изучен. Нами в данной монографии эти реагенты отнесены к реагентам, образующим ионные ассоциаты, по аналогии с другими аминами, [c.32]


    Определение вольфрама основано на выделении его из раствора навески в виде растворимой в кислотах вольфрамовой кислоты Н2 У 04-Н20 желтого цвета при этом вольфрам одновременно отделяется от большинства сопутствующих компонентов. Образование осадка вольфрамовой кислоты происходит в результате окисления карбидного и металлического вольфрама действием азотной кислоты. Вольфрам обычно не весь выделяется в осадок, небольшая часть его остается в растворе. При очень точных анализах в фильтрате оставшуюся часть вольфрама снова выделяют в осадок с помощью коагулятора (желатины) или осаждают алкалоидом (цинхонином). Осадок вольфрамовой кислоты способен соосаждать примеси из раствора (кремниевую кислоту, железо, фосфор, хром, ванадий, молибден, ниобий и др.), поэтому титриметрический и фотометрический методы имеют определенные преимущества, так как загрязнения здесь существенного влияния не оказывают, как это происходит в гравиметрическом методе. [c.343]

    Электрогравиметрический метод анализа заключается в выделении определяемого элемента в виде металла на предварительно взвешенном катоде, после чего электрод с осадком взвешивают и определяют количество металла. Этим способом можно определять кадмий, медь, никель, серебро, олово и цинк. Некоторые вещества могут окисляться на платиновом аноде с образованием нерастворимого плотного осадка, пригодного для гравиметрического определения. Примером может служить окисление свинца(П) до диоксида свинца. Кроме того, в аналитической химии электролиз можно использовать для разделений ионов известен способ, когда легко восстанавливающиеся ионы металлов осаждаются на ртутном катоде, а трудно восстанавливающиеся катионы остаются в растворе. Таким способом алюминий, ванадий, титан, вольфрам, щелочные и щелочноземельные металлы можно отделить от железа, серебра, меди, кадмия, кобальта и никеля, которые выделяются на ртути. [c.413]

    В последнее время гравиметрические методы применяют все реже, за исключением тех случаев, когда необходим высокоточный анализ или при отсутствии других эффективных методов. Вольфрам часто определяют гравиметрически, поскольку титриметрические методы определения вольфрама малоэффективны. [c.236]

    Качественный анализ вольфрама очень слабо разработан. В основном используют осаждение малорастворимой вольфрамовой кислоты при действии на вольфраматы минеральных кислот вместе с вольфрамовой в этих условиях осаждается кремневая кислота. От последней вольфрам отделяют обработкой осадка аммиаком, а затем обнаруживают в фильтрате. Из неорганических реагентов чаще всего используют роданиды щелочных металлов и аммония в присутствии восстановителей [Ti(IH), Sn(II)], из органических — толуол-3,4-дитиол (дитиол). Вероятно, для обнаружения можно использовать реагенты, рекомендованные для фотометрического определения вольфрама они чувствительны и достаточно надежны, особенно после отделения вольфрама, например кислым гидролизом. Реагенты, рекомендованные для гравиметрического определения вольфрама, мало пригодны для его обнаружения, так как образуют нехарактерные осадки с вольфрамом. [c.47]


    О гравиметрическом определении молибдена в сталях осаждением сероводородом и взвешиванием в форме M0S3 см. [1282], Вольфрам удерживают в растворе добавлением винной кислоты. [c.158]

    Гравиметрические методы определения. Красный осадок соединения кобальта (III) с 1-нитрозо-2-нафтолом примерного состава Со(СюНб02 )з-пН20 образуется в слабокислых (pH 3.8—4,0), нейтральных и аммиачных растворах. Образовавшееся соединение при подкислении не разрушается. Мешают осаждению кобальта серебро, висмут и олово. Железо и вольфрам можно маскировать фторид-ионом. Не мешают осаждению кобальта равные по содержанию количества никеля, алюминия, кадмия, кальция, магния, бериллия, хрома, свинца, марганца, цпнка, сурьмы, мышьяка, ртути. В присутствии больших количеств никеля проводят переосаждение кобальта. После высушивания при 115°С состав соединения становится постоянным (п = 2), и оно применимо для гравиметрического определения содержания кобальта. В некоторых случаях отделение Со от сопутствующих элементов проводят осаждением в виде кобальтинитрита (гексанитрокобальтата III) каль я  [c.71]

    Перекись водорода и перекись натрия препятствуют полному осаждению циркония на холоду при кипячении в их присутствии цирконий полностью осаждается. При осаждении гидроокиси циркония щелочами отделяются следующие элементы мюминий, галлий, цинк, молибден, вольфрам, ванадий, бериллий, мышьяк и Сурьма. В присутствии карбонатов отделяется уран. Для этой цели к щелочи прибавляют I—2 г Na Og. Прибавление перекиси водорода улучшает отделение. В осадке с цирконием находятся железо, титан, марганец, хром, кобальт, никель, медь, кадмий, серебро, индий, таллий, торий и редкоземельные элементы. Магний и щелочноземельные металлы при достаточном содержании карбонатов также полностью осаждаются. Этот метод может иметь некоторое значение для отделения циркония от молибдена, вольфрама, ванадия, алюминия и бериллия. По данным Руффа [700], бериллий не отделяется щелочью количественно, так же как и алюминий, особенно в присутствии больших количеств аммонийных солей. Осаждение гидроокиси циркония аммиаком может применяться при гравиметрическом определении циркония. Но этот метод используется лишь в случае отсутствия примесей, осаждаемых аммиаком. [c.53]

    Другим важным экстрагентом является бензоин а-оксим, который осаждает вольфрам (VI) и молибден (VI). Образующиеся комплексы экстрагируют хлороформом [13,14]. Для полного выделения вольфрама экстракцию проводят несколько раз. Ванадий и хром также экстрагируются, но их можно замаскировать. Как и молибден, вольфрам экстрагируется из кислых растворов в присутствии восстановителей и роданида, но хуже, чем молибден. Этот метод используют для отделения вольфрама, предшествующего его гравиметрическому определению с помощью тетрафениларсоний-хлорида [15]. Вместо обычного восстановителя — хлорида олова (II)— применена ртуть, а комплекс экстрагируют раствором трибензиламина в хлороформе. Вольфрам реэкстрагируют слабощелочным раствором, содержащим пероксид водорода, для разрушения избытка роданида и окисления вольфрама до Ш . Метод позволяет отделять менее 50 мг вольфрама, но не рассчитан на отделение микросодержаний вольфрама. [c.235]

    Осаждение вольфрама цинхонином было описано в разделе Методы отделения . Гравиметрическому определению вольфрама с цинхонином мешают As , и Si, не мешает Мо . Комплекс W с цинхонином гигроскопичен. Для перевода в WO3 осадок прокаливают при 700—850 °С [6]. Вольфрам в среде HNO3 образует с пероксидом водорода пероксовольфрамат, который при нагревании разлагается с выделением осадка вольфрамовой кислоты. Осадок фильтруют, прокаливают при 700—850°С и взвешивают в виде WO3 [31]. Для осаждения H2WO4 в методике рекомендуется нагревание раствора до 60°С. В работе [32] показано, что полное осаждение достигается при 80 °С. [c.236]

    Все методы анализа основаны на использовании зависимости физико-химического свойства вещества, называемого аналитическим сигналом или просто сигналом, от природы вещества и его содержания в анализируемой пробе. В классических методах химического анализа в качестве такого свойства используются или масса осадка (гравиметрический метод), или объем реактива, израсходованный на реакцию (титриметрический анализ). Однако химические методы анализа не в состоянии были удовлетворить многообразные запросы практики, особенно возросшие как результат научно-технического прогресса и развития новых отраслей науки, техники и народного хозяйства в целом. Наряду с черной и цветной металлургией, машиностроением, энергетикой, химической промышленностью и другими традиционными отраслями большое значение для промышленноэнергетического потенциала страны стали иметь освоение атомной энергии в мирных целях, развитие ракетостроения и освоение космоса, прогресс полупроводниковой промышленности, электроники и ЭВМ, широкое применение чистых и сверхчистых веществ в технике. Развитие этих и других отраслей поставило перед аналитической химией задачу снизить предел обнаружения до 10 . .. 10 °%. Только при содержании так называемых запрещенных примесей не выше 10 % жаропрочные сплавы сохраняют свои свойства. Примерно такое же содержание примеси гафния допускается в цирконии при использовании его в качестве конструкционного материала ядерной техники. (Вначале цирконий был ошибочно забракован как конструкционный материал этой отрасли именно из-за загрязнения гафнием). Еще меньшее содержание загрязнений (до 10 %) допускается в материалах полупроводниковой промышленности (кремнии, германии и др.). Существенно изменяются свойства металлов, содержание примесей в которых находится на уровне 10 % и меньше. Например, хром и бериллий становятся ковкими и тягучими, вольфрам и цирконий становятся пластичными, а не хрупкими. Определение столь малых содержаний гравиметрическим или титриметрическим методом практически невозможно, и только применение физико-химических методов анализа, обладающих гораздо более низким пределом обнаружения, позволяет решать аналитические задачи такого рода. [c.4]


    Ферраро [6301 определял 1,96—10,33% W в ниобиевых высокотемпературных сплавах, содержащих V, Zr, Ti, Mo, Та, Nb, гравиметрически, осаждая W0a-a H20 азотной кислотой. Ошибка определения 0,03%. Предварительно вольфрам отделяют ионообменным методом на ионите дауэкс-1. [c.84]

    Платунов и Дейч [313] отмечают, что каждый новый реагент для гравиметрического определения вольфрама должен испытываться для осаждения нормальных, изополи- и гетерополиволь-фраматов. Наиболее трудно осаждается метавольфрамовая кислота. Авторы предлагают осаждать вольфрам метиленовым голубым в соляно- и азотнокислых растворах нормальные и паравольфраматы осаждаются ею па 100%, метавольфраматы — на 99%. [c.89]

    Назаренко и Шварцбурд [264[ установили, что бензидин количественно осаждает фосфорновольфрамовую кислоту и может быть применен для гравиметрического определения в ней вольфрама. Если осаждать вольфрам бензидином в присутствии малых количеств фосфора, то получаются завышенные результаты за счет образования фосфорновольфрамовой гетерополикислоты и ее осаждения реагентом. [c.90]

    Клейс [585] сопоставил точность результатов гравиметрического определения вольфрама в растворе вольфраматов с помощью органических осадителей феназона, цинхонина, таннина, смеси таннин + цинхонин, таннин + феназон, бензидина, о-толидпна, родамина С, -нафтохинолина. Автор считает, что только два реагента — цинхонин и -нафтохинолин — могут быть рекомендованы для гравиметрического определения вольфрама ошибка определения < 0,1%. Пятницкий и соавт. [350[ после критического рассмотрения реагентов на вольфрам рекомендуют использовать -нафтохинолин, пирамидон и 8-оксихинолин (см. ниже). [c.90]

    Для определения вольфрама в природных и промышленных объектах используют методы, обладающие различной чувствительностью, поскольку необходимо определять вольфрам в количествах от десятков процентов (шеелит, концентраты, сплавы, стали) до 10 % (чистые и особо чистые металлы, металлоиды, полупроводники, реагенты). Большие количества вольфрама определяют гравиметрически или титриметрически, причем гравиметрические методы сочетают точность и селективность, а титриметрические — экспрессность и селективность. Малые количества вольфрама оп-ределяютТфотометрическими, спектральными, электрохимическими, иногда — радиоактивационными методами. Селективность этих методов невелика (за небольшими исключениями), ее повышают отделением основы или микрокомпонента и другими приемами, описанными в соответствующих главах монографии. Чувствительность определения повышают концентрированием вольфрама. [c.169]

    Рейхен [830] определяла вольфрам в горных породах полярографически на фоне 4,6 Af H l + 0,1 Af винная кислота. Анализируемое вещество сплавляют с Nag Og, железо отделяют фильтрованием, ванадий маскируют коричной кислотой определению не мешают Мо, Sn, Sb, если их содержание не намного больше содержания вольфрама. По точности метод приближается к гравиметрическому. Активационным методом определяли 4-IO" — 1,1-10-< % W при навеске 0,1 г [704] и 7-10-5-9,2-10- % W [85], атакже(0,9—4,4)-10 % W в феррогаббро и (1,5—4,5)-lQ- %W в дунитах [533]. Среди реагентов для фотометрического определения наиболее пригодны роданид [64, 847] и толуол-3,4-дитиол [64, 245, 404, 405, 717, 822]. Роданид позволяет определять 1 10 -1-10 % W в осадочных породах методом стандартных серий после разложения породы кислотным способом с добавлением HF [64]. [c.170]

    Обзор титриметрических и фотометрических методов анализа концентратов см. в [6991. В шеелитовом концентрате вольфрам определяют гравиметрически с помощью пирамидона [407] и титриметрически [406, 476]. Метод [476] пригоден для определения вольфрама в вольфрамитовом концентрате. В молибденовом концентрате определяют 0,04—0,89% W из навески 0,1 г фотометрически роданидным методом, после связывания Mo(V) в комплексонат (см. гл. 6) [67]. Для определения 2,01—5,08% W рекомендован [214] пирокатехиновый фиолетовый. В оловянно-вольфрамовых концентратах, содержащих 9,16—46,8% WO3, 30,0—7,0% TiO  [c.172]


Смотреть страницы где упоминается термин Определение вольфрама гравиметрическое: [c.174]    [c.169]   
Аналитическая химия вольфрама (1976) -- [ c.82 , c.195 ]




ПОИСК





Смотрите так же термины и статьи:

Бензол фенилгидроксиламин гравиметрическое определение вольфрама, методика

Гравиметрическое определение вольфрама в ферровольфраме

Определение гравиметрически



© 2025 chem21.info Реклама на сайте