Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Абсорберы число тарелок

    Абсорбер для очистки циркуляционного газа и углеводородного газа стабилизации с клапанными тарелками. Число тарелок — 20. [c.57]

    Определить число теоретических тарелок и состав газа, выходящего из абсорбера. Эффективность тарелки для каждого компонента принимается одинаковой. Изменением температуры в абсорбере пренебречь. [c.47]


    Рабочая площадь / провальной тарелки может быть принята равной сечению абсорбера, т. е. ф = 1. Тогда требуемое число тарелок равно п = = 321/0,785-2,6" = 61. [c.111]

    Пример 17-8. Определить число тарелок барботажного абсорбера (с ситчатыми тарелками) для поглощения аммиака водой в условиях примеров 16-5 и 17-5. Диаметр абсорбера 1,6 м, сопротивление жидкости на тарелка Арж = 343 н/м (35 кгс/м ). [c.627]

    Простейшей математической моделью является модель без учета кинетики процесса абсорбции. Насадочный абсорбер рассматривается как тарельчатый аппарат с тарелками, имеющими к. п. д., равный 1 (модель 2). Причем число тарелок выбирается равным числу ступеней, эквивалентных одной теоретической тарелке. [c.416]

    Применим в абсорбере клапанные тарелки, к. п. д. которых при хемосорбции СОг и НаЗ находятся в пределах 10—40 /) [1, с. 124 14, с. 139]. Приняв среднее числовое значение Т1 = 25%, найдем число рабочих тарелок  [c.30]

    Аналогичным методом рассчитываются и остальные тарелки абсорбера. Число тарелок определяется составом газа, заданной степенью абсорбции (переработки) окислов азота, температурой и принятым гидродинамическим режимом. [c.290]

    При необходимом числе единиц переноса свыше шести-семи в аппаратах со ступенчатым контактом требуется обычно более трех ступеней и в данном случае эти аппараты целесообразно выполнять в виде тарельчатых колонн. В качестве таких аппаратов возможно использование барботажных абсорберов с тарелками различных типов. Эти абсорберы в принципе применимы при любом числе единиц переноса, но при очень больших числах единиц переноса требуется много тарелок, что ведет к увеличению высоты аппарата, ело удорожанию и повышению гидравлического сопротивления. При числе единиц переноса на эквивалентную ступень (см. стр. 227), равном 0,8, в аппарате с 20 тарелками можно получить общее число единиц переноса 16 высота рабочей части такого аппарата составит 8—10 м. По габаритам описанный барботажный абсорбер обычно меньше насадочного, но обладает большим гидравлическим сопротивлением. При необходимом числе единиц переноса более шести-семи и работе без давления насадочные аппараты могут оказаться предпочтительнее. [c.653]

    При необходимом числе единиц переноса свыше шести-семи в аппаратах со ступенчатым контактом требуется обычно более трех ступеней, и в данном случае эти аппараты целесообразно выполнять в виде тарельчатых колонн. В качестве таких аппаратов возможно использование барботажных абсорберов с тарелками различных типов. Эти абсорберы в принципе применимы при любом числе единиц переноса, но при очень больших числах единиц переноса требуется много тарелок, что ведет к увеличению высоты аппарата, его удорожанию и повышению гидравлического сопротивления. При числе единиц пере- [c.578]


    Таким образом (4.28) представляет собой уравнение материального баланса для абсорбера с п теоретическими тарелками и связывает начальную и конечную концентрации целевого компонента в газовой фазе с технологическими параметрами процесса и числом теоретических тарелок. [c.81]

    Высота абсорбера Н рассчитывается в зависимости от числа реальных тарелок щ, расстояния между ними Ят и расстояний от верхней тарелки до крышки абсорбера Як и от нижней тарелки до днища абсорбера Яд. [c.85]

    На рис. 1У-70, а показан сигнальный граф, соответствующий уравнениям (7) п (9), а на рис. 1У-70, б—г — последовательность эквивалентных преобразований исходного сигнального графа (для случая, когда число тарелок в колонне п = 3). Для верхней тарелки абсорбера 2д = Уг- На второй тарелке (состав [c.191]

    Если уравнения (95), (96) применить для каждой тарелки абсорбера, имеющего общее число тарелок, равное Ы, то получим следующее уравнение  [c.132]

    Число теоретических тарелок Nt, необходимое для обеспечения заданного коэффициента извлечения одного компонента в абсорбере при постоянном среднем коэффициенте его извлечения на каждой тарелке, можно рассчитать по уравнению [1, с. 161]  [c.27]

    Расчет необходимой высоты насадки абсорбера, на поверхности которой происходит абсорбция, может быть выполнен различными методами. Так же как и для тарельчатого абсорбера, может быть найдено число идеальных контактов (число теоретических тарелок), а затем определена высота насадки, эквивалентная одной теоретической тарелке, и общая высота насадки, необходимая для достижения заданного режима абсорбции. [c.232]

    Разновидностью абсорберов с ситчатыми тарелками являются так называемые пенные абсорберы, тарелки которых, как указывалось (см. стр. 238), отличаются от ситчатых конструкцией переливного устройства. При одинаковом числе тарелок эффективность пенных аппаратов выше, чем эффективность абсорберов с ситчатыми тарелками. Однако вследствие большой высоты пены на тарелках гидравлическое сопротивление пенных абсорберов значительно, что ограничивает область их применения. [c.451]

    При расчете необходимого числа Пд действительных тарелок (по любому из указанных выше способов) в первом приближении можно принять, что на всех тарелках со сливными устройствами фазы движутся по взаимно перпендикулярным направлениям и в этом случае движущую силу процесса вычисляют по схеме абсорбции с перекрестным током. На тарелках без сливных устройств движущую силу процесса рассчитывают по схеме полного перемешивания фаз (см. главу X, стр. 428). Рассчитав Пц, определяют высоту Н абсорбера (в м) [c.466]

    Число единиц переноса на тарелку определяется для паровой и жидкой фаз по правилу аддитивности [см. уравнения (Х,58) и (Х,58а) соответственно. Однако в данном случае расчет затруднен из-за отсутствия надежных зависимостей для вычисления числа единиц переноса на тарелку по каждой из фаз, т. е. величин Пу и Пх. Поэтому, несмотря на различие процессов абсорбции и ректификации (как указывалось, ректификация отличается взаимным обменом компонентами между фазами в результате одновременно протекающих процессов массо- и теплообмена), в первом приближении величины Пу и л можно найти с помощью соответствующих формул для тарельчатых абсорберов. Например, в случае колпачковых тарелок для расчета Пу применимо уравнение (XI,62), а для. расчета — [c.500]

    Число теоретических тарелок в абсорбере принято равным восьми (восьмая тарелка моделирует узел предварительного насыщения абсорбента). Давление в колонне 3,5 МПа. Температуру сырого газа принимали равной температуре в узле предварительного насыщения абсорбента. [c.218]

    Решетчатую провальную тарелку (живое сечение 10%, ширина щели 6 мм) испытывали [165] для улавливания газового бензина соляровым маслом из сланцевого газа. Приведенная скорость газа составляла 0,7 м/сек. При числе тарелок 7 достигалось такое же извлечение, как в абсорбере с хордовой насадкой высотой 25 м. [c.578]

    Расстояние между тарелками должно быть тем больше, чем выше приведенная скорость газа. Обычно расстояния между тарелками принимают в пределах 0,2—0,6 м. В настояш,ее время стремятся уменьшить расстояние между тарелками, особенно при большом числе тарелок, так как это позволяет уменьшить высоту абсорбера и снизить его стоимость. В некоторых случаях расстояние между тарелками увеличивают по конструктивным соображениям (например, при необходимости устройства лазов между тарелками). [c.594]

    В насадочных абсорберах при скоростях газа 0,5—1,5 м/сек и /1ог=0,25—I м (при абсорбции хорошо растворимых газов) отношение w/hoJ составляет примерно 1—2 сек . В барботажных абсорберах при скоростях газа 1—2 м/сек, расстоянии между тарелками 0,25—0,5 м и числе единиц переноса на эквивалентную ступень 0,5—2 отношение ий/кот= 1 —16 сек К [c.657]

    Рассчитать барботажный абсорбер для поглощения углеводородов из смеси с инертным газом. Удельный расход поглотителя (масло) /=1д,/0 = 1,2. Давление в абсорбере 4 бар, температура 40 °С. Изменением температуры в абсорбере можно пренебречь. При расчете тарелок может быть принята схема полного перемешивания жидкости на тарелке. Содержание компонентов в поступающем поглотителе равно нулю (Х,дг=0). Содержание компонентов в поступающем газе, а также значения констант фазового равновесия т и числа единиц переноса на тарелку N составляют  [c.735]


    Расчет числа тарелок в аппарате продолжают до тех пор,, пока определенная концентрация компонента на выходе с п-й тарелки не будет меньше заданной концентрации на выходе из абсорбера. [c.72]

    Высокая нагрузка по газу может быть достигнута и в аппаратах с тарелками провального типа [114, 115], которые наиболее целесообразно применять при повышенном давлении и приведенной скорости газа 0,15—0,4 м/с. В таких условиях коэффициент извлечения СОа будет достаточно высок. Это подтверждается данными [6, 116] работы промышленного абсорбера под давлением 0,98— 1,17 МПа (10—12 кгс/см ) для тонкой очистки коксового газа от СОо и НаЗ . Общее число тарелок в таком абсорбере 24 в первых [c.160]

    Число тарелок п, необходимое для обеспечения заданного коэффициента извлечения в абсорбере ф при постоянном среднем коэффициенте извлечения на каждой тарелке ф, может быть рассчитано (при а < 0,5) по уравнению  [c.161]

    Абсорбер для очистки циркуляционного газа представляет собой вертикальный аппарат с барботажными тарелками. Ввиду сложности расчета процесса хемосорбции число теоретических тарелок подбирают на основании опытных данных. На действующих установках гидроочпстки для достижения высокой степени очистки газа в абсорбере установлено 20 барботажных тарелок. [c.93]

    Пусть имеем абсорбер с п теоретическими тарелками (рис. 25, а) (счет тарелок сверху вниз) V — число молей газа-носителя, т. е. газа, в котором содержится целевой компонент, но сам газ-носитель в процессе массообмена не участвует Vn+ — число молей целевого (извлекаемого) компонента в газе-носителе на входе в абсорбер ui —число молей целевого компонента в газе, уходящем из абсорбера ya = Vn+ IV и yK = V jy—соответственно начальная и конечная относительные молярные концентрации целевого компонента в газовой фазе L — число молей свежего (регенериро-нанного) абсорбента /о — число молей целевого компонента в регенерированном абсорбенте — число молей целевого компонента в насыщенном абсорбенте Xn=klL и Хк=-1п1Ь — соответственно начальная и конечная относительные молярные концентрации целевого компонента в жидкой фазе. [c.80]

    Входящий в абсорбер газ и уходящий насыщенный абсорбент встречаются в нижнем сечении, т. е. их составы должны удовлетворять уравнению рабочей линии (точка В). В результате нзаимодействия потоков газа и жидкости на нижней тарелке абсорбера образуются равновесные потоки газа и жидкости, составы которых определяются точкой 1 на равновесной кривой. Проведя горизонталь до пересечения в точке 2 с рабочей линией, получим состав жидкости, стекающей с вышерасположенной тарелки. Продолжив аналогичные построения, наконец достигнем точки А, находящейся на рабочей линии, координаты которой определяются составами уходящего из абсорбера газа К, и свежего абсорбента Хд. В данном случае число теоретических тарелок равно пяти. [c.299]

    Абсорберы промышленных установок масляной абсорбции обычно имеют 20—30 реальных тарелок, что соответствует семи— десяти теоретическим. Хорошо работают абсорберы с восемью теоретическими тарелками. Из графика Кремсера (см. рис. 26) видно, что увеличение числа теоретических тарелок (выше восьми не приводит к снижению удельной циркуляции абсорбента. Однако при явлениях вспенивания в производственных условиях к. п. д. реальных тарелок резко падает, а следовательно, снижается эффективность процесса. Примем для словий нашей задачи семь теоретических тарелок. В качестве абсорбента в промысловых условиях мол<ет использоваться стабильный конденсат или его фракции. Принимаем в качестве абсорбента стабильный конденсат с молекулярной массой 160. [c.164]

    Пользоваться графиком Кремсера рекомечдуется следующим образом. Допустим, нам необходимо определить скорость циркуляции масла через абсорбер, имеющий восемь теоретических тарелок. Целевым компонентом является пропан, степень извлечения которого принята равной 0,85. На оси ординат находим 0,85, по горизонтали 0,85 движемся до пересечения с кривой, соответствующей восьми теоретическим тарелкам. Опускаясь из точки пересечения вниз по вертикали на оси абсцисс находим величину эф- Зная К, У +1 и А, можно рассчитать удельный расход абсорбента. Аналогично, если известно удельное орошение, можно определить значение А. Число теоретических тарелок, необходимых для данной степени извлечения целевого компонента при известных коэффициенте абсорбции и данном количестве удельного орошения, [c.132]

    Большинство абсорберов установок масляной абсорбции имеет 20—30 тарелок, что соответствует 7—10 теоретическим тарелкам. Хорошо работают аосор-беры, имеюш,ие восемь теоретических тарелок. Из рис. 73 видно, что при уменьшении скорости циркуляции абсорбента число теоретических тарелок стремится к бесконечности. Увеличение числа тарелок в абсорберах сверх восьми не приводит к уменьшению скорости циркуляции абсорбента. Левая часть кривых рис. 73 представляет собой бесконечное число теоретических тарелок. При угле наклона этих кривых, равном 45°, , = А. Кривые для ограниченного числа тарелок совпадают с кривыми, имеющими наклон, равный 45° С, при некоторых значениях А. [c.134]

    Общая эффективность тарелок гликолевого абсорбера находится в пределах 25—40% от теоретической. Большинство конструкторов, учитывая влияние па работу абсорберов вспениваиия и других факторов, которые снижают эффективность абсорбционного процесса гликолевой осушки, принимают число тарелок в абсорберах с запасом. Обычный четырехтарельчатый абсорбер по своим характеристикам примерно эквивалентен абсорберу с одной теоретической тарелкой. [c.232]

    Число теоретических тарелок в абсорбере моисет быть определено графическим построением ступенчатой линии между равновесной кривой ОС и оперативной линией АВ, так же как это выполпялось раньше при расчете ректификационных колопн. На рис. 8. 2 приведено это построение. Точка В, лежащая на оперативной прямой, соответствует неравновесному состоянию газовой и жидкой фаз под нижней тарелкой абсорбера. Очевидно, что в результате контакта лшдкости с газом па нижней (первой) тарелке состав газа определится ординатой точки 1, лежащей на кривой разиювесия фаз. [c.227]

    Для насадочных абсорберов и десорберов основные размеры могут быть найдены или путем определения числа теоретических тарелок и высоты, эквивалентной одной теоретической тарелке, или путем вычисления поверхности контакта фаз с использованием основного уравнения абсорбции (8. 1). Выбор диаметра и высоты такого аппарата и гидравлический расчет, включающий обоснование гидродинамического режима и определение потери напора, осуществляются с использованием расчетных уравпепий, подробно рассмотренных в 5 седьмой глапы. [c.244]

    Основной аппарат установки — реактор диаметром 3 м, заполненный катализатором АКМ или АНМ, — футерован изнутри жаростойким цементным покрытием с повышенными теплоизоляционными свойствами. Сырьевые теплообменники — кожухотрубчатые с плавающей головкой противоточные одноходовые, диаметр корпуса 1200 мм. Печь вертикально-секционного типа. Компрессор на оппозитной базе марки 2М16-32/35-60. Колонные аппараты с S-образными тарелками. Абсорберы для очистки газов тарельчатого типа, число тарелок— 13. [c.120]

    Высота абсорбера определяется конструкцией аппарата. Для абсорбера тарельчатого типа она зависит от числа тарелок, необходимых для обеспечения требуемой степени очистки газа. Учитывая, что коэффициент полезного действия тарелок не превышает 25—40%, число их обычно принимается равным 25— 30 шт. Из-за возможного вспенивания раствора обычно расстояние между тарелками принимается равным 500 м, хотя в зайи-симости от типа тарелок оно может несколько меняться. Размеры абсорберов и отпарных колонн установок аминовой очистки могут быть определены с помощью рис. IV. 15 и IV. 16. [c.285]

    Испытан [184] абсорбер диаметром 150 мм с 16 провальными тарелками (живое сечение 20,3 и 22%, диаметр отверстий 3,8 и 5 мм). Орошение производилось 10%-ным раствором Naa Og начальное содержание окислов азота в газе было 0,3—0,5%, степень окисления составляла 27—45%. Опыты показали, что живое сечение практически не влияет на степень абсорбции. Изменение скорости газа в пределах 1—1,9 м сек и плотности орошения от 3 до 6,3 м1ч незначительно влияло на степень извлечения, которая равнялась 47—66%. Степень извлечения па одну тарелку при степени окисления 50% составляла 7,5% и падала приблизительно до 4% при изменении степени окисления до 42 или 60%. Те же авторы [185] изучали абсорбцию окислов азота при различном числе тарелок в аппарате (от 1 до 15) оказалось, что с увеличением числа тарелок п средняя эффективность тарелки уменьшается пропорционально л . На этом основании предположили, что эффективность тарелки зависит от того, поступает ли на нее свежий или прореагировавший на вышележащей тарелке раствор. [c.584]

    При проектировании барботажных тарельчатых абсорберов необходимо выбрать тип тарелки, скорость газа и определить расстояние между тарелками и число тарелок. Ряд вопросов, связанных с проектированием барботажных тарельчатых колонн и их конструктивным оформлением, рассмотрен в монографиях Александрова [33а] и Стабникова [35]. [c.588]

    Абсорбционные способы осушки газа. На рис. 52 представлена технологическая схема установки по осушке газа ди- и триэтиленгликолем. Влажный газ, пройдя сепаратор 1, поступает в абсорбер 2 в нижней скрубберной секции его он очищается от взвешенных капелек жидкости и затем ноднимается вверх, проходя через колпачковые тарелки, число которых изменяется на разных установках от 4 до 10. Навстречу потоку газа (сверху вниз) движется раствор гликоля, вводимый на верхнюю тарелку абсорбера. В результате контакта газа и раствора последний поглощает влагу из газа. Осушенный газ поступает в каплеуловитель 3, где освобождается от захваченных капелек раствора, и по газопроводу II направляется по назначению. Раствор ДЭГ (или ТЭГ) собирается в нижней части аппарата, из которой отводится на регенерацию в выпарную колонну (десорбер) 9, причем он предварительно проходит теплообменник 5, выветриватель 7 и фильтр 8. Уровень раствора в низу абсорбера поддерживается регулятором уровня. В выпарной колонне 9 происходят выпарка раствора и доведение его концентрации до [c.116]

    Сконденсированная при температурах 40—86°С жидкан фаза возвращается на верхние тарелки колонны для выделения (отбеливания) из нее растворенных оксидов азота парами кипящей кислоты. Продукционная колонна выводится из колонны и после охлаждения направляется на склад. Оставшаяся часть кислоты поступает на орошение колонны в количестве, обеспечива 6щем флегмовое число 1,1—3. Несконденсированные пары кислоты и нитрозные газы через промывной абсорбер отсасываются газодувкой. [c.130]

    Представляет также интерес опыт эксплуатации промышленного МЭА-абсорбера в производстве метанола (работа выполнена совместно ГИАП и Щекпнскпм химкомбинатом). Абсорбер диаметром 2,1 м производительностью по газу до 60 ООО м /ч (при н. у.) обеспечивал очистку газа, содержаш его 10—13% (об.) до 2—5% (об.) СОз-Число тарелок в абсорбере 28, расстояние между тарелками 0,4 м. Коэффициент массопередачи, отнесенный к 1 м рабочей части аппарата, для зоны а >> 0,5 составляет 25—45 м /(м -ч-кгс/см2) или 25,5-10 —46-10 м /(м -ч-Па) (объем газа при н. у.). Для зоны а <С 0,5 значения коэффициента массопередачи возра стают при увеличении скорости газа от 100 до 400 м /м -ч-кгс/см , что связано с ростом высоты барботажного слоя соответственно коэффициент извлечения для одной тарелки повышается от 0,07 до 0,15. [c.161]


Смотреть страницы где упоминается термин Абсорберы число тарелок: [c.235]    [c.184]    [c.110]    [c.66]   
Основные процессы и аппараты химической технологии Изд.7 (1961) -- [ c.508 ]




ПОИСК





Смотрите так же термины и статьи:

Абсорбер



© 2024 chem21.info Реклама на сайте