Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анаэробные бактерии образование NAD

    Продукты жизнедеятельности обеих групп бактерий различны. Аэробные бактерии не накопляют гумуса, они довольно быстро разрушают свежее ограническое вещество, выделяя из него минеральные соли в доступном для растений состоянии. Напротив, анаэробные бактерии, крайне медленно разлагающие органическое вещество, как бы консервируют его они образуют деятельный перегной, который при наличии достаточного количества кальция может склеивать почвенные частицы в комочки. Следовательно, эти бактерии способствуют образованию прочной комковатой структуры почвы. [c.59]


    Важным показателем качества воды является количество растворенного в ней кислорода. Кислород необходим для жизни обитателей водоемов. За счет деятельности аэробных бактерий кислород используется для окисления органических веществ останков животных и растительных организмов с образованием СО2, Н2О, а также небольших количеств NOr, SO4", РО4 , которые усваиваются растениями. Тем самым осуществляется самоочищение водоема. При избытке органических веществ растворенного кислорода оказывается уже недостаточно для существования аэробных бактерий. В этих условиях процесс разложения органических веществ выполняют анаэробные бактерии с образованием СН4, NH i, HaS, Н3Р. Вода приобретает гнилостный запах, гибнет рыба и другие обитатели водоемов. [c.219]

    Но все-таки общее направление движения нефти в конечном счете определяется тектоникой, поэтому, если можно сп-орить о роли тех или иных синклинальных форм на фоне других тектонических структур, то ни в коем случае нельзя отрицать громадного значения и роли больших депрессий регионального характера, названных нами геосинклиналями. Ведь в них-то и происходило накопление первично битуминозного материала — так называемой материнской породы. Здесь под влиянием повышенной температуры и давления и при участии других факторов (анаэробных бактерий) происходило превращение органического материала в диффузно рассеянную в породе нефть, и отсюда началось ее движение вследствие разницы в удельном весе воды и нефти происходит их разделение и подъем последней вверх по восстанию. На своем пути поднимающаяся из геосинклиналей с места своей родины нефть встречала различного рода препятствия тектонического характера в виде литологических особенностей того или иного пласта, и в этих преградах происходило ее накопление и образование нефтяных залежей . Отрицая возможность накопления нефти в некоторых локальных структурных типах синклиналей, нельзя забывать огромного значения и роли геосинклиналей в образовании и аккумуляции нефти. [c.272]

    Вероятно, нефть образовалась главным образом из планктона, который осаждался в закрытых водоемах в виде ила и подвергался действию анаэробных бактерий. Под влиянием этих бактерий сначала произошло превращение углеводов в жирные кислоты. По-видимому, аналогичные процессы образования нефти могут протекать и в настоящее время, напрнмер в Черном море. [c.84]

    Важнейшим свойством ила в процессах очистки воды является его способность образовывать хлопья, которые можно отделить от воды седиментацией во вторичных отстойниках затем ил возвращается вновь в аэро-тенк, а очищенная вода направляется на последующую обработку. Избыток ила, т. е. тот его прирост, который образуется за счет ассимиляции органических веществ сточных вод, удаляется в сооружения анаэробной обработки. Образование хлопьев ила происходит в той стадии метаболизма, когда соотношение количеств питательных веществ и бактериальной массы становится малым. Низкое соотношение обусловливает низкий энергетический уровень системы активного ила, что, в свою очередь, приводит к недостаточному запасу энергии движения. Энергия движения противодействует силам притяжения, а если она мала, то противодействие тоже м -ло, и бактерии взаимно притягиваются. Считается, что важными факторами флокуляции являются также электрический заряд на поверхности клетки, образование бактерией капсулы и выделение слизи на поверхности клетки. [c.169]


    В результате жизнедеятельности анаэробных бактерий ежегодно в атмосферу выделяется, согласно оценкам, 500-800 млн.т метана. Это эквивалентно 4-7 млн, баррелей нефти при отношении водород/углерод, равном 4 Функционирование бактерий, приводящее к образованию метана, называется анаэробным дыханием. Очевидная возможность использования анаэробных процессов для произвол- [c.69]

    В осуществлении первой стадии процесса принимают участие разнообразные анаэробные бактерии, превращающие в растворимые вещества множество соединений, включая целлюлозу, жиры и белки. Ключевую роль при этом играют процессы разложения целлюлозы, так как большинство видов сырья или сточных вод обогащены лигноцеллюлозой. По оптимальной температуре жизнедеятельности эти бактерии можно отнести к одной из трех групп термофильным организмам, живущим при 50— 60 "С, мезофильным (30—40°) и психрофильным, предпочитающим комнатную температуру (около 20 X). Большая часть исследований была выполнена для реакторов, работающих на основе мезофилов. При повышенной температуре скорость распада исходного сырья, особенно целлюлозы, увеличивается, а это — важное преимущество. Скорость образования метана лимитируется интенсивностью процессов разложения сырья. Именно поэтому время удержания при работе с некоторыми субстратами бывает так велико. [c.76]

    Недавно выяснилось, что обратная реакция, катализируемая ФЕП-карбокси-лазой,-это единственный путь синтеза оксалоацетата из Сз-соединений у многих строго анаэробных бактерий (и червей). В среде с высоким содержанием СОг реакция протекает преимущественно в сторону образования оксалоацетата. [c.249]

    Соединения углерода, которые накапливались в растениях ранних эпох, большей частью подверглись превращениям под влиянием анаэробных бактерий. Из остатков отмерших растений образовались торф и каменный уголь. Этому процессу способствовало высокое давление минеральных отложений, которые постепенно осаждались на остатках растений. Движение земной коры, связанное с образованием гор, также благоприятствовало появлению угля, поскольку при этом повышались давление и температура. Признаки обильного и повсеместного растительного покрова нашей планеты особенно отчетливо обнаруживаются в каменном угле той эпохи, которая началась приблизительно 400 миллионов лет назад и длилась около 55 миллионов лет. Разумеется, эти растения отличались от современных. Судя по отпечаткам на каменном угле, в лесу тогда преобладали гигантские папоротники и плауны. По остаткам в современных образцах угля можно получить ясное представление [c.132]

    Кислоты образуют безвредные минеральные соли, и сточная вода может быть сброшена в водоемы. Таким образом, целью биологических методов очистки сточных вод является создание благоприятных условий для размножения полезных в данном случае бактерий. Эти условия могут быть созданы при доступе или без доступа кислорода воздуха. В первом случае будут развиваться так называемые аэробные бактерии и в процессе окисления органические вещества будут превращаться в минеральные. Во втором случае развиваются анаэробные бактерии, которые в процессе гниения будут разрушать органические вещества с образованием аммиака и газообразных углеводородов. [c.42]

    Основными видами природного твердого топлива являются древесина, торф, горючие сланцы и ископаемые угли (бурый уголь, каменный уголь и антрацит). Кроме древесины, все это — ископаемые, или минеральные, топлива, большая часть которых, называемых гумусовыми, образовалась из остатков наземных растений на что впервые было указано М. В. Ломоносовым. Наиболее молодым из них является торф, образование которого происходит и в настоящее время в болотах вследствие превращения органических веществ, содержащихся в остатках растений (травянистых, мхов, деревьев), под слоем воды без доступа воздуха в результате деятельности анаэробных бактерий. Возраст торфа измеряется сотнями и тысячами лет в нем содержится много остатков растений, а основную часть его составляют гуминовые кислоты. По запасам торфа СССР занимает первое место в мире. Для добычи торфа применяют чаще всего фрезерный способ при котором находящийся на поверхности слой торфа измельчается на мелкие куски особой машиной — фрезером, перемещаемым посредством трактора [c.226]

    Метановое брожение — процесс распада органических веществ под воздействием некоторых анаэробных бактерий с образованием метана. Интенсивно протекает в почве, болоте, водорослях. Менее интенсивно метан образуется в кишечнике человека и животных. [c.189]

    В неподвижной эмульсии, покрытой пленкой масла, содержание кислорода снижается, что создает идеальные условия для развития анаэробных бактерий необходимо периодически аэрировать эмульсию за счет встряхивания и перемещивания. Следует также не допускать попадания в эмульсию металлической стружки и опилок, которые способствуют нежелательным электрохимическим процессам и образованию сероводорода. [c.16]

    Создание целого ряда смазочно-охлаждающих жидкостей мых компонентов еще более снижает растворимость хлористого (СОЖ) с целью повысить класс чистоты поверхности изделий, улучшить физико-механические свойства обрабатываемого материала и продлить срок службы инструмента вызвано повышением скоростей металлообработки. В процессе работы СОЖ постепенно загрязняются стружкой, пылью, частицами абразива, волокнистыми и смазочными материалами. Поскольку значительную часть СОЖ изготовляют на основе продуктов переработки нефти, такие системы, называемые эмульсиями, являются питательной средой для многих видов анаэробных бактерий, содержащихся в почве и воде. Продукты жизнедеятельности таких бактерий обладают токсикологическим действием на окружающую среду, которому в первую очередь подвержен человек Бактериальная флора и продукты разложения СОЖ при несоблюдении режимов работы оказывают вредное влияние на кожу рук станочников, способствуют возникновению профессиональных дерматитов и раздражению слизистых оболочек верхних дыхательных путей. Слив даже небольших количеств СОЖ в природные водоемы приводит к образованию на поверхности воды сплошной масляной пленки, преграждающей доступ кислорода и тем самым подавляющей жизнедеятельность микрофлоры водной среды. [c.120]


    Теперь, после всех пройденных нами деталей, резюмируем еще раз вкратце ход процесса образования цриродной нефти. Процесс этот был непрерывный химическая сторона его нам мало известна, но общее направление его можно уже считать более или менее установленным. Начался он в органогенных или биогенных илах и, не прекращаясь, совершался во все время диагенетического. изменения как самой органогенной прослойки, так и вмещающих ее пород. Он протекал при не особенно высокой температуре, при все возрастающем давлении и при участии анаэробных бактерий. Образование жидкой или полужидкой нефти началось еще в илах и в не вполне отвердевшей породе, и по мере того как эта порода под влиянием возрастающего давления все более и более уплотнялась, жидкость (т. е. вода и нефть) из нее выжпмалась в рыхлые породы (в пески, известняки п пр.), именно в те, которые подвергались меньше всего сжатию. [c.345]

    Органические остатки подвергаются разлагающему действию анаэробных бактерий. В первую очередь разрушаются белковые вещества с образованием сероводорода и аммиака и других продуктов глубокого распада белковой частицы и распада каких-то устойчивых азотистых соединений. Получается, по словам акад. В. Л. Омеляпского, как бы выгнпвший , или, как его неудачно называет Г. Потонье, минерализованный сапропель, который не изменяется очень долго даже при свободном доступе воздуха. Во вторую очередь подвергается распадению клетчатка, или целлюлоза, и лигнин и другие органические соединения с высоким содержанием кислорода. Роль анаэробных бактерий состоит в извлечении кислорода и в образовании устойчивых соединений. Первая стадия бактериального разложения заканчивается образованием жиров и других устойчивых соединений. Этим вообще заканчивается стадия биохимических процессов, и органическое вещество обращается в тот кероген, о котором мы уже говорили. По мнению других исследователей, роль анаэробных бактерий на этом не заканчивается. Мэррэй Ст-юарт и другие английские геологи считают, что бактериальное разложение совершается до конца, до превращения органического вещества в нефть. Жиры, разложенные в жирные кислоты, а эти [c.338]

    Из предыдущего видно, что мы не разделяем полностью ни точки зрения большинства американских геологов, считающих кероген промежуточным веществом на пути превращения органического вещества в нефть, ни точки зрения, развитой Меррэем Стюартом, считающим, что органическое вещество превратилось в нефть прежде его погребения и что процесс образования свободной нефти есть процесс нарушевия прилипания нефти к глинистым частицам и выжимания ее в пористую породу. Мы полагаем, что нефтеобразование, начавшись с разложения жиров в биогенном иле до его погребения, продолжалось и после его погребения при активном содействии анаэробных бактерий во весь период диагенетического изменения породы. Все эти взгляды нуждаются в дальнейшем их уточнении и экспериментальной проработке в лаборатории и увязке их с полевыми наблюдениями. Особенно важными мы считаем исследования по дальнейшему выяснению роли анаэробных бактерий в процессах нефтеобразования. [c.349]

    Точно установлено, что угли образовались из торфов, а следовательно, из растений. Гетерогенный характер углей объясняется разнородностью исходного растительного материала (от одноклеточных алы "ДО морфологических частей высокоорганизованных деревьев). Различные химические составные части отмерших растительных остатков (лигноцеллюлозные ткани, споропелленин, смолистые вещества, кутим и др.) послужили основой для образования различных мацералов. Исходный материал в торфяных болотах накапливался в разнообразных условиях, которые сильно влияли на его последующее преобразование. К числу этих условий относятся такие, как толщина водного покрова и pH среды, а также больший или меньший доступ кислорода, с которым связана жизнедеятельность аэробных и анаэробных бактерий. [c.19]

    Процесс образования угля в природе, называемый углефикацией или карбонизацией, разделяется на биохимическую (диагенезис) и геологическую (метаморфизм) стадии [63], На стадии диагенезиса углеводородные соединения растительных остатков (целлюлоза, лигнин, глюкоза, крахмал и др.) в результате реакций окисления кислородом воздуха и кислородом, содержащимся в проточных водах, а также под воздействием анаэробных бактерий превращались в гомогенизированное вещество — гумус. Б гумусе продолжалось взаимодействие входящих в его состав органических и привнесенных водой неорганических компонентов. Стадия метаморфизма проходила лосле образования над отложившейся органической массой достаточно мощных осадочных слоев неорганических веществ, т. е. на большой глубине и при высоких давлениях и температурах без доступа воздуха. В таких условиях органическое вещество уплотнялось и обезвоживалось, из него выделялся метан, что приводило к уменьшению содержания кислорода и водорода и росту содержания углерода. [c.64]

    Остановимся далее на другой характерной биологической особенности активного ила, связанной с образованием крупномасштабных частиц — хлопьев активного ила. Наличие хлопьев, внутри которых перенос веществ осуществляется за счет молекулярной диффузии, в большинстве практических случаев определяет лимитирующую фазу процесса биологической очистки. Так, при дефиците кислорода внутри хлопьев ила происходит снижение скорости развития бактерий, образование анаэробных, нитчатых форм, что приводит к резкому изменению качества ила, его вспуханию . Размер и структура хлопьев активного ила зависят от многих факторов, включая физиолого-биохимические характеристики ила, условия его агрегации и флокуляции, а также режима перемешпвания и аэрации среды. Турбулизация среды способствует разрушению хлопьев, что, с одной стороны, улучшает условия транспорта кислорода и субстрата к клеткам, а с другой,— ухудшает условия седиментации ила, способствует увеличению илового индекса и снижает качество биоочистки. Указанное противоречие можно преодолеть введением после стадии аэрирования стадии флокуляции, обеспечивающей образование хлопьев активного ила перед подачей его в отстойник. Устойчивый в турбулентном потоке размер хлопьев будет соответствовать масштабу турбулентности 1-а [c.226]

    Большинство предшествующих исследований коррозии, вызванной суль-фатвосстанавливающими бактериями, было посвящено почвенной коррозии или влиянию лабораторных культур бактерий. Очень мало внимания уделялось важной роли сульфатвосстанавливающих бактерий в морских средах. Рассмотренные выше результаты натурных коррозионных испытаний, проведенных Научно-исследовательской лабораторией ВМС США, показывают, что эти анаэробные бактерии оказывают определяющее влияние на коррозию конструкционных сплавав на основе железа в океане. Во всех местах, включая полусоленые воды бухты Чисапик, сульфатвосстанавливающие бактерии оказывали воздействие на металл. К концу первого года экспозиции коррозионные продукты, содержащие сульфид железа, были обнаружены на большинстве образцов. Питтинг на всех пластинах был умеренным. Отдельные раковины или участки с толстым слоем отложений не приводили к образованию более глубоких питтингов. В результате деятельности анаэробных бактерий на всех металлических поверхностях под образовавшимся слоем продуктов коррозии и приросших морских организмов возникал мягкий, плохо сцепленный с металлом слой, состоявший в основном из сульфида железа. При наличии такого слоя расположенные над ним продукты коррозии и обрастания легко удаляются большими целыми кусками. Проведенные испытания показали, что при образовании на металле в процессе обрастания достаточно толстого сплошного покрытия создаются анаэробные условия. При этом процесс коррозии определяется бактериальной активностью. [c.450]

    Второй тип переноса метильной группы от метилкобаламина имеет место при образовании метана анаэробными бактериями, количественно важной реакцией в биосфере. Метаногенные бактерии могут превращать метильные группы метанола, ацетата или №-СНз-Н4ро1 в метан, а также восстанавливать СО2, формальдегид или формиат в метан. [c.297]

    Известны, однако, случаи, когда такое временное агрегирование одноклеточных организмов связано с осуществлением определенной функции. Примером может служить образование плодовых тел миксобактериями, которое делает возможным созревание цист, на что не способны в обычных условиях единичные клетки. В аэробных условиях описано образование строго анаэробными бактериями из рода lostridium колоний, по внешнему виду напоминающих плодовые тела миксобактерий, в которых спорулиру-ющие клетки и эндоспоры расположены внутри и защищены от кислорода плотным слоем слизи. [c.76]

    Хотя облигатно анаэробные бактерии в целом очень чувствительны к О2, они могут в природе находиться в аэробных зонах. Широкое распространение представителей рода lostridium в местах с высоким парциальным давлением Oj объясняется наличием у них эндоспор, не чувствительных к молекулярному кислороду. Однако и многие не образующие спор строго анаэробные прокариоты обнаружены в природе в местах, где наблюдается активное развитие облигатных аэробов. Вероятно, совместное развитие с облигатными аэробами, активно потребляющими молекулярный кислород, приводящее к образованию зон с низкой концентрацией [c.129]

    Значительное большинство геологов и химиков являются сторонниками органического происхождения нефти и газа. Сторонники органической гипотезы (М.В. Ломоносов, В.И. Вернадский, И.М. Губкин, А.Ф. До-брянский и др.) считают, что источниками происхождения нефти были остатки растений и живоггных, скопившихся в течение многих миллионов лет на дне водоемов в прошлые геологические эпохи в виде ила. Отмершие организмы перекрывались в дальнейшем слоями осадочных пород и под влиянием анаэробных бактерий подвергались биохимическим превращениям. При этом, в основном, происходили сложные гфоцессы гидролиза и восстановление лтидов (жироподобные вещества), углеводов, белков и лигнина, содержащихся в организмах. Часть органического вешества в верхних слоях осадочных отложений превращалась бактериями в газы (СОз, N2, ННз, СН4 и др.) - стадия диагенеза. В нижних же слоях отложений на глубине 1-3 км в условиях высокого давления (10-30 Мпа) и повышенной температуры (120-150 ) при каталитическом влиянии горных пород начиналась решающая фаза генезиса нефти образование углеводородов из органического вещества и их превращения - стадия катагенеза. [c.8]

    Физиологическое действие. Все органические вещества — это соединения кислорода, поэтому кислород является жизненно важным элементом почти для всех живых организмов (исключение состанляют анаэробные бактерии), О процессах дыхания и ассимиляции см. 14.3. Кислород поступает в кровь через легкие. В крови кислород слабо связывается с гемоглобином (хромофор красных кровяных телец) с образованием оксигемоглобина и в таком виде подводится к клеткам. Под действием ферментов кислород окисляет приносимый также кровью виноградный сахар (глюкозу), превращая его в диоксид углерода и воду освобождаемая при этом энергия используется для протекания различных жизненных процессов (работа мускулов, нагревание тела И Т. д.). [c.362]

    Исследования микробиолога Т. Л. Гинзбург-Карагичевой показали, что на глубине моря до 1900. л существуют анаэробные бактерии, способные разлагать белки, углеводы и жиры. В последнее время появились работы, показывающие, что бактерии играют пе только разрушительную роль, но и способны в результате своей жизнедеятельности превращать жирные кислоты и некоторые другие вещества в углеводороды и в том числе в высокомолекулярные парафины. Однако доказано пока только образование метана при разложении органического материала бактериями. Кроме того, при температуре выше 50° и, во всяком случае, при 100° всякая жизнедеятельность прекращается. Эти температуры соответствуют глубине осадочных пород до 2—3 км. [c.179]

    Недостаток кислорода в глубоких слоях ила способствует развитию там преимущественно анаэробных бактерий, осуществляющих процессы брожения. Особенно распространены в этих горизонтах бактерии, сбраживающие клетчатку с образованием водорода и метана, и бактерии, восстанавливающие нитраты и сульфаты (табл. П-3). В воде представлены преимущественно бесспоровые виды бактерий, а в иле — главным образом споровые. Чем глубже залегает ил, тем больше в нем споровых форм бактерий. [c.151]

    Анаэробные бактерии живут в воде, лишенной кислорода, или в иле, где формируется восстановительная среда, и выра батывают метан в процессе разложения углеводородов простой структуры. В такой же среде встречаются и некоторые виды сульфобактерий, которые восстанавливают сульфаты сернистых соединений и вырабатывают сероводород. Эти микроорганизмы способствуют образованию черного сернистого железа в результате реакций железа с сероводородом, и поэтому грязь и ил окрашены в характерный черный цвет. [c.17]

    Как и в случае многих других разновидностей пищевого сырья,, необходимость сохранения овощей для употребления их в течение всего года привела к созданию ряда новых пищевых про дуктов. До того как в практику вошли консервирование в банках и замораживание, для сохранения овощей использовалась главным образом соль. Низкие концентрации соли (2—2,5%) при переработке содержащих сахара овощей с малой долей белков не препятствуют брожению с образованием кислот, идущему при участии бактерий. Этот способ дает хорошие результаты, но если белка в овощах много (горох, фасоль),то продукт портится. Если такие овощи засаливают, то соли добавляют столько, чтобы полностью подавить брожение. Когда соли добавляют мало, основную роль в консервации играют молочнокислые бактерии. Образование молочной кислоты из сахаров препятствует развитию бактерий кишечной группы, протеолити-ческих бактерий, анаэробных и спорообразующих видов. [c.124]

    Перекись водорода и супероксид-анион-радикал Ог - — химически активные и токсичные соединения, которые могут образовываться при автоокислении многих органических веществ in vivo. Образование атмосферы, содержащей кислород, и развитие организмов с аэробным типом обмена потребовало возникновения ферментов, которые могли бы возможно эффективнее удалять перекись водорода и Of-. Отравление многих анаэробных бактерий при контакте с воздухом объясняется именно отсутствием у этих организмов таких ферментов [145]. Здесь мы ограничимся рассмотрением ферментов, которые удаляют перекись водорода. В работе [c.194]


Смотреть страницы где упоминается термин Анаэробные бактерии образование NAD: [c.340]    [c.721]    [c.335]    [c.30]    [c.416]    [c.482]    [c.173]    [c.132]    [c.14]    [c.141]    [c.88]    [c.515]    [c.73]    [c.76]    [c.299]    [c.323]    [c.508]    [c.59]   
Биохимия Том 3 (1980) -- [ c.407 ]




ПОИСК







© 2025 chem21.info Реклама на сайте