Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сода электрохимическим

    Во всех промышленно развитых странах происходит сокращение производства каустической соды химическими способами, так как с увеличением производства хлора одновременно возрастает и производство каустической соды электрохимическими способами. В настоящее время на долю химических способов приходится не более 12—15% общей выработки каустической соды. [c.4]


    Производство хлора и каустической соды электрохимическим методом непрерывно растет, а технология и аппаратура совершенствуются. [c.4]

    В 1960 г.. мировое производство каустической соды электрохимическими и химическими способами составило примерно [c.331]

    Разнообразное и все возрастающее потребление кальцинированной соды во многих отраслях народного хозяйства обусловливает непрерывное увеличение ее производства. Возрастает также производство каустической соды электрохимическим методом (стр. 324 сл.). Доля каустической соды, получаемой химическими способами (стр. 476), в дальнейшем будет сокращаться. [c.421]

    Каустическую соду электрохимическими методами вырабатывают из поваренной соли. Вспомогательными веществами в этих процессах являются серная и соляная кислоты, кальцинированная сода и ртуть (при ртутном способе электролиза). Химическими методами каустическую соду производят из кальцинированной соды. При известковом способе применяется также известь, а при ферритном способе вспомогательным материалом служит окись железа. [c.21]

    Применение очищенного рассола в производстве каустической соды электрохимическим методом при диафрагменном способе электролиза предотвращает забивку пор диафрагмы и снижение ее фильтрующей способности, сопровождающееся уменьшением скорости протекания анолита, повышением концентрации щелочи в анодном пространстве и, как следствие, заметным падением выхода по току. При ртутном способе электролиза очистка рассола, поступающего в электролизеры, предупреждает образование нерастворимых амальгам кальция и магния, нарушающих нормальный режим процесса. Технология очистки рассола для ртутного электролиза (в связи с тесной связью отделения очистки со всем производственным процессом, осуществляемом по данному способу электролиза) приведена в главе 16. [c.55]

    Температуры, при которых проводится процесс очистки, различны в зависимости от назначения очищенного рассола. В производстве кальцинированной соды требования к очищенному рассолу менее высоки и его очистка производится без подогрева при 11—20° С (в зависимости от времени года), температура содового раствора поддерживается в пределах 85—90° С (зимой). Рассол, направляемый на производство каустической соды электрохимическими ме- тодами, предварительно нагревают до 40—50° С — температуры, оптимальной для процесса электролиза. [c.64]

    Расширение производства каустической соды электрохимическим методом связано с необходимостью одновременной организации производств, потребляющих хлор, для чего нужны весьма значительные капитальные затраты, в несколько раз превышающие затраты на электролитическое производство хлора и каустической соды. [c.9]


Таблица 4 Распределение мощности производства каустической соды электрохимическим способом, % Таблица 4 <a href="/info/1763681">Распределение мощности</a> <a href="/info/746442">производства каустической соды электрохимическим</a> способом, %
    Электрохимический метод производства каустической соды. Электрохимические процессы относятся к химическим процессам, происходящим под действием постоянного электрического тока. [c.118]

    Аппаратура, предназначенная первоначально для осуществления межфазного контакта в таких процессах, как абсорбция, ректификация или экстракция, часто применяется и для проведения реакций. Многие гетерогенные реакции в жидкой фазе протекают в колоннах с насадкой. При получении кальцинированной соды по методу Сольвея используются колонны с особого типа колпачковыми тарелками. Электрохимические процессы, такие, как окисление, восстановление и электролиз, требуют применения специальной аппаратуры, которая здесь не рассматривается. Описание электродуговых и фотохимических процессов можно найти в специальной литературе. [c.381]

    А/дм со свинцовым анодом и при комнатной температуре. Для тех же и высоколегированных сталей рекомендуется удалять окалину электрохимическим методом в расплавленной смеси кальцинированной соды (40—60%) и едкого натра (60—40%) в течение 1—5 мин при 450—500° С и катодной плотности тока 25—50 А/дм2. [c.441]

    В электрохимических производствах каустической соды мощность современных цехов диафрагменного электролиза составляет 200—300 тыс. т в год. Новые хлорные производства размещаются вблизи природных запасов соли, а в переработку направляются в основном рассолы, получаемые подземным растворением соли. [c.17]

    В промышленности йодоформ получают электрохимически, подвергая электролизу разбавленный раствор иодида калия (к которому добавлено немного соды) в спирте или ацетоне. При этом на катоде из выделяющегося калия и воды образуется едкое кали, а на аноде — иод. Оба эти вещества реагируют со спиртом или ацетоном, содержащимся в электролитной жидкости, с выделением йодоформа. [c.230]

    Открытие М. Фарадеем законов электролиза позволило организовать в конце девятнадцатого века в относительно малых объемах получение каустической соды, алюминия и другие электрохимические производства,в частности получение хлора. [c.13]

    Одним из технических способов получения свинцовых белил является электрохимический способ. Он основан на электролизе раствора поваренной соли со смесью соды при одновременном пропускании через раствор двуокиси углерода. В качестве анодов служат свинцовые пластины. [c.504]

    Особого внимания заслуживают вопросы техники безопасности в цехах электролиза воды и получения хлора и каустической соды. Основная опасность при электрохимическом получении водорода и кислорода связана с возможностью образования взрывоопасных смесей водорода с кислородом или воздухом. При содержании водорода в кислороде от 4 до 95% или от 4 до 75% в воздухе существует опасность взрыва образующейся смеси. Поэтому перед пуском и после отключения все аппараты и трубопроводы технологической схемы производства водорода и кислорода должны тщательно продуваться азотом. Работу в цехе с открытым огнем можно вести лишь после отключения установки, проведения анализа воздуха на содержание водорода и при непрерывной вентиляции производственного помещения. Всякие ремонтные работы на аппаратах, заполненных водородом, запрещаются. [c.231]

    Итак, из воды Н2О получились и водород Н2, и кислород О2 а для чего же сода Для ускорения опыта. Чистая вода очень плохо проводит электрический ток, электрохимическая реакция идет в ней слишком медленно. [c.42]

    Наиболее распространенными методами электрохимического детектирования, используемыми в проточно-инжекционном анализе, являются кондук-тометрия и потенциометрия (датчики pH, ион-селективные и металлические электроды). Продемонстрировано сочетание проточно-инжекционного метода и титрования до конечной точки при определении карбоната натрия и каустической соды в технологических средах [16.4-55]. Определение тиосульфата натрия методом проточно-инжекционного окислительно/восстановительного. [c.663]

    В настоящее время преобладающая роль в производстве хлора и каустической соды принадлежит электрохимическим методам их получения по способу электролиза водных растворов поваренной соли. [c.14]

    На заре развития хлорной промышленности, когда потребность в хлоре была ограничена, основным продуктом являлась каустическая сода. Ограниченность сбыта и потребления хлора сдерживала возможное развитие электрохимического способа производства. Однако в связи с организацией производства большого ассортимента разнообразных хлорпродуктов открылись возможности для применения огромного количества хлора. Основа развития хлорной промышленности — все растущий спрос многих отраслей промышленности и народного хозяйства на хлор и различные хлорсодержащие продукты. [c.18]


    Тем не менее в ближайшее десятилетие электрохимические методы производства хлора и каустической соды, по-видимому, сохранят главную роль [49]. [c.20]

    В электролизерах с диафрагмой применение металлических анодов позволяет повысить плотность тока до 2—3 кА/м , обеспечить стабильный во времени энергетический и температурный режимы работы электролизера и снизить затраты электроэнергии на производство при одновременной его интенсификации. Применение металлических анодов облегчает решение конструкции биполярного электролизера с диафрагмой, открывает новые пути развития электрохимического метода получения хлора и каустической соды как по методу с ртутным катодом, так и по способу электролиза с диафрагмой. [c.22]

    В начале развития электрохимического метода производства хлора и каустической соды, когда технология получения искусственного графита еще не была реализована в промышленности, в качестве анодного материала использовались угольные блоки и в меньшей стенени — отливки из магнетита. Значительное применение в качестве анодного материала находила также платина как в чистом виде, так и в виде платиноиридиевого сплава. [c.57]

    Первым шагом в создании малоизнашивающихся анодов (МИА) были разработка и испытание в процессе электролиза хлоридов щелочных металлов и промышленное использование в катодной защите и в некоторых электрохимических процессах анодов из титана, покрытого активным слоем металлов платиновой группы или их сплавов (ПТА). Хотя после появления окиснорутениевых анодов интерес к ПТА снизился, однако и в последнее время продолжается интенсивная работа по усовершенствованию этого типа электродов. В последнее время опубликовано много предложений цо применению в качестве анода в электролизерах для получения хлора и каустической соды титана, покрытого слоем платины или других металлов платиновой группы или их сплавов [135—141]. [c.75]

    Существенным достижением является создание и широкое практическое применение диафрагм, обладающих ионообменными свойствами. Ионитовые мембраны получают все большее распространение в производстве хлора и каустической соды, электрохимическом синтезе неорганических и органических веществ, электроднализе и других процессах. [c.6]

    В книге изложейы теоретические основы и технология производства кальцинированной соды, бикарбоната натрия, каустической соды электрохимическими и химическими методами и едкого кали. Книга состоит из трех разделов. [c.2]

    Первый патент на электрохимический метод производства хлора был выдан в 1879 г. русским изобретателям И. Глухову и Ф. Ващуку. Б 1897 г. С. Степанов получил патент на аппарат для электролиза хлористого натрия. Промышленное производство хлора электрохимическим путем стало возможно в 80-х годах прошлого века, когда была разработана стойкая пористая цементная диафрагма, пригодная для разделения образующихся при электролизе хлора, водорода и каустической соды. Несколько позже был предложен способ электролиза с ртутным катодом. [c.131]

    После травления в серной и соляной кислотах на поверхности стальных изделий остается обычно темный порошкообразный налет (шлам), который удаляют механически — щетками, смоченными раствором соды (3—5%) или извести, либо химически — растворением в 10%-ном растворе хромовой кислоты с добавкой 15—30 г/л H2SO4, либо электрохимически — на аноде в 5— 10%-ном растворе щелочи при комнатной температуре и при анодной плотности тока 5—7 А/дм в течение нескольких минут. [c.373]

    Изделия нз цинкового сплава чаще всего покрывают медью, никелем и хромом для защитно-декоративной отделки их поверхности. Перед нанесением покрытия поверхность полируют и очищают от жировых и других загрязнений. Обезжиривание п юизво-дится в слабых щелочных растворах (pH = 10—11) химическим и электрохимическим способами. В обоих случаях рекомендуются растворы, содержащие 20—40 г/л кальцинированной соды (КагСОз) и 20—40 г/л третичного фосфорнокислого натрия (ЫазР04). Температура растворов 60—80°С. [c.429]

    При электролизе (электрохимическом разложении) растворов органических и особенно неорганических веществ нередки случаи, когда на электроде электрохимической ячейки протекает только одна реакция. Если электролиз проводят в условиях, когда смешение катодных и анодных продуктов исключено, то все количество электричества, прошедшее через раствор в процессе электролиза, расходуется только на окисление (анодная реакция) или восстановление (катодная реакция) единственного вещества. Измерив количество электричества, израсходованного за время протекания реакции до полного раз-ложения реатрующего вещества, можно определить сод )жа-ние этого вещества, основываясь на известных заишах эяек- [c.251]

    НАТРИЯ ГИДРОКСИД (едкий натр, каустическая сода) NaOH — бесцветные кристаллы, т. пл. 320° С, хорошо растворяется в воде, образует гидраты, поглощает Oj из воздуха, превращаясь в карбонат натрия. Практически нерастворим в жидком аммиаке и большинстве органических растворителей. Н. г. разрушает кожу, бумагу и другие материалы органического происхождения. Попадание даже незначительного количества Н, г. в глаза опасно. Поэтому все работы с Н. г. необходимо выполнять в защитных очках и резиновых перчатках. Получают Н. г. электрохимическим разложением водного раствора хлорида натрия или при взаимодействии карбоната натрия с известью в водном растворе. Технический продукт — белая, твердая непрозрачная масса с лучистым изломом, достаточно гигроскопична. Растворинсь в воде, выделяет бол1)Шое количество тепла. Н. г.— один из важнейших продуктов химической промышленности, широко применяемый почти во всех отраслях народного хозяйства. Н. г. хорошо растворяет жиры, образуя мыло. Большое количество Н. г. используется для производства мыла. [c.169]

    В периодической системе они образуют главную подгруппу I группы химических элементов. В атомах щелочных металлов содержится по одному внешнему, или валентному, электрону. Отдавая валентный электрон, их атомы обращаются в однократно положительно заряженные ионы. Во всех своих соединениях щелочные металлы одновалентны и образуют только ионные связи. Из металлов щелочные металлы — самые активные ими начинается электрохимический ряд напряжений. Гидроокиси щелочных металлов, в том числе известные вам NaOH — едкий натр, или каустическая (в переводе жгучая ) сода, и едкое кали КОН, опасны в обращении. Они разъедают кожу и ткани, поэтому называются едкими щелочами. Подобно гидроокисям, растворимы в воде н все соли ще.1ючных металлов, с которыми приходится нам встречаться все эти соли относятся к сильным электролитам. [c.128]

    Наиболее эффективный путь усовершенствования фильтрующей асбестовой диафрагмы заключается в ее модификации, которая состоит в обработке диафрагмы инертным полимером, приводящей к скреплению асбестовых волокон. Образуется так называемая асбополимерная диафрагма, сохраняющая свои размеры в ходе эксплуатации вследствие существенного уменьшения набухаемости. Стабильность размеров модифицированной диафрагмы позволяет снизить межэлектродное расстояние и омическое падение напряжения в электролите и диафрагме примерно на 0,4 В. Модифицированные асбестовые диафрагмы служат значительно дольше обычных асбестовых. Так, например, срок службы модифицированной диафрагмы в электрохимическом производстве хлора и каустической соды составляет примерно 1,5 года. [c.19]

    Электрохимическая система, состоящая из электролизера с разделенным нефильтрующей порисгой перегородкой межэлектродным простралством не дает возможности осуществить производство хлора, каустической соды и водорода со стабильными выходами по току. При неподвижном электролите или при независимой циркуляции анолита и католита через электролизер, снабженный пористой диафрагмой, невозможно предотвратить диффузию и электроперенос гидроксильных ионов, накапливающихся в катодном пространстве, и анодное пространство. По мере электролиза и роста концентрации щелочи проникновение е в анодное пространство усиливается, что приводит к протеканию рассмотренных вьше реакций, связанных с образовани-<ем гипохлорита и хлората. [c.148]

    Для защитно-декоративной отделки изделия из цинкового сплава чаще всего покрывают медью, никелем и хромом. Перед нанесением покрытия поверхность полируют и очищают от жировых и других загрязнений. Обезжиривание ведут в слабощелочных растворах (рН = 10—11) химическим и электрохимическим способами. В обоих случаях рекомендуют применять растворы, содержащие 20—40 г/л кальцинированной соды МагСОз и 20—40 г/л фосфата натрия NasPOi. Температура растворов 60—80 °С. [c.333]

    В пp )MыпJлeннo ги для получения каустической соды i меняются электрохимический способ и химический. Химича метод практически утратил свое значение и в СССР практ ски не применяется. В настооттее время электрохимический тод является основным в производстве хлора и каустиче соды. [c.400]

    Затем удаляют с пластинок окисиую пленку электрохимическим способом в расплаве щелочи и соды (40% ЫаОН и 60 )о НзаСОз) ири 450—500 "С. [c.111]

    В течение всей истории развития электрохимического метода пройзводства хлора и каустической соды проводились исследования с целью разработки анодов, мало изнашивающихся в процессе электролиза. Различные варианты конструкций анодов из платиновой или платино-иридиевой проволоки или фольги не могли конкурировать с графитовыми анодами из-за сложности конструкции и дороговизны платиновых материалов. [c.73]


Смотреть страницы где упоминается термин Сода электрохимическим: [c.5]    [c.31]    [c.170]    [c.139]    [c.2]    [c.43]    [c.328]    [c.60]   
Основы общей химической технологии (1963) -- [ c.117 , c.118 , c.123 ]




ПОИСК





Смотрите так же термины и статьи:

Ионообменный метод получения каустической соды и хлора Стадии производства, общие для обоих электрохимических методов получения хлора и каустика

Каустическая сода, производство электрохимическими методами

Сода сода

Схемы основных процессов электрохимического производства хлора и каустической соды

Сырье для электрохимического производства хлора и каустической соды

Технология электрохимического производства хлора и каустической соды

Электрохимические производства хлора и каустической соды

Электрохимические процессы с кой соды

Электрохимические способы производства хлора и каустической соды

Электрохимический метод одновременного получения хлора, каустической соды и водорода

Электрохимический способ производства каустической соды



© 2025 chem21.info Реклама на сайте