Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимический способ производства каустической соды

    Электрохимическое производство хлора, каустической соды и водорода осуществляется в промышленности двумя способами диафрагменным — в электролитических ваннах с твердым като- [c.3]

    Электрохимический способ производства каустической соды [c.12]

    Едкий натр получается в промышленности электрохимическим и химическим способами. В настояш,ее время наибольшее значение имеет электрохимический способ производства каустической соды (стр. 565 и сл.). [c.541]


    На заре развития хлорной промышленности, когда потребность в хлоре была ограничена, основным продуктом являлась каустическая сода. Ограниченность сбыта и потребления хлора сдерживала возможное развитие электрохимического способа производства. Однако в связи с организацией производства большого ассортимента разнообразных хлорпродуктов открылись возможности для применения огромного количества хлора. Основа развития хлорной промышленности — все растущий спрос многих отраслей промышленности и народного хозяйства на хлор и различные хлорсодержащие продукты. [c.18]

    Электрохимические способы производства хлора и каустической соды [c.36]

    Во всех промышленно развитых странах происходит сокращение производства каустической соды химическими способами, так как с увеличением производства хлора одновременно возрастает и производство каустической соды электрохимическими способами. В настоящее время на долю химических способов приходится не более 12—15% общей выработки каустической соды. [c.4]

    В 1960 г.. мировое производство каустической соды электрохимическими и химическими способами составило примерно [c.331]

    В электролизерах с диафрагмой применение металлических анодов позволяет повысить плотность тока до 2—3 кА/м , обеспечить стабильный во времени энергетический и температурный режимы работы электролизера и снизить затраты электроэнергии на производство при одновременной его интенсификации. Применение металлических анодов облегчает решение конструкции биполярного электролизера с диафрагмой, открывает новые пути развития электрохимического метода получения хлора и каустической соды как по методу с ртутным катодом, так и по способу электролиза с диафрагмой. [c.22]

    Разнообразное и все возрастающее потребление кальцинированной соды во многих отраслях народного хозяйства обусловливает непрерывное увеличение ее производства. Возрастает также производство каустической соды электрохимическим методом (стр. 324 сл.). Доля каустической соды, получаемой химическими способами (стр. 476), в дальнейшем будет сокращаться. [c.421]

    Электрохимическое производство каустической соды и хлора осуществляется двумя способами ртутным и диафрагменным. [c.11]

    Ртуть применяется в электрохимическом производстве каустической соды и хлора по ртутному способу в качестве жидкого катода электролитических ванн. [c.30]


    Электрохимические методы вследствие своих технических и экономических преимуществ, простоты процесса, одновременного получения хлора, каустической соды и водорода получили широкое применение в промышленности и вскоре полностью вытеснили химические способы производства хлора. [c.72]

    Применение очищенного рассола в производстве каустической соды электрохимическим методом при диафрагменном способе электролиза предотвращает забивку пор диафрагмы и снижение ее фильтрующей способности, сопровождающееся уменьшением скорости протекания анолита, повышением концентрации щелочи в анодном пространстве и, как следствие, заметным падением выхода по току. При ртутном способе электролиза очистка рассола, поступающего в электролизеры, предупреждает образование нерастворимых амальгам кальция и магния, нарушающих нормальный режим процесса. Технология очистки рассола для ртутного электролиза (в связи с тесной связью отделения очистки со всем производственным процессом, осуществляемом по данному способу электролиза) приведена в главе 16. [c.55]

    Расход постоянного тока является основной статьей расходов при производстве каустической соды и хлора электрохимическими способами и зависит от напряжения на электролизере и выхода по току. При нормальных условиях работы электролизера выход по току мало изменяется и составляет 94—97%. Основное влияние на расход электроэнергии оказывает напряжение. В условиях промышленного электролиза напряжение разложения составляет 3, — 3,2 в и тоже мало изменяется. [c.233]

    Твердый практически безводный едкий натр, называемый также твердой каустической содой, необходим для некоторых процессов, например органического синтеза, а также в анилинокрасочной и фармацевтической промышленности, производстве электрохимическим способом металлического натрия, для лабораторных работ. Многие мелкие потребители, удаленные на большие расстояния от заводов-производителей каустической соды, тоже применяют твердый продукт, перевозка и хранение которого более удобны и рентабельны. Потребность в твердом безводном едком натре составляет около 10% общего объема производства каустической соды. В процессе обезвоживания едкий натр очищается от железа, кальцинированной соды и других примесей и качество его повышается, что имеет большое значение для многих потребителей, предъявляющих повышенные требования к чистоте продукта. Для получения твердого едкого натра используют жидкую каустическую соду, полученную электрохимическими и химическими способами, применяемыми в содовой промышленности. [c.323]

    Едкий натр, или каустическая сода, тоже представляет огромный интерес для многих отраслей промышленности. 85% всей каустической соды производится сейчас путем электролиза, а в некоторых странах этот продукт получают только электрохимическим способом. Намечается определенная тенденция к свертыванию химического метода производства каустической соды из кальцинированной, поскольку, помимо других недостатков этого метода, при его применении образуется много сточных вод (15 м на 1 т продукта). [c.50]

Таблица 4 Распределение мощности производства каустической соды электрохимическим способом, % Таблица 4 <a href="/info/1763681">Распределение мощности</a> <a href="/info/746442">производства каустической соды электрохимическим</a> способом, %
    В настоящее время преобладающая роль в производстве хлора и каустической соды принадлежит электрохимическим методам их получения по способу электролиза водных растворов поваренной соли. [c.14]

    Б дореволюционной России использование электрохимических методов в промышленпости находилось на очень низком уровне. Электрохимические способы использовались в ограниченном масштабе для производства хлора и каустической соды. [c.71]

    Под непрямым восстановлением органических соединений обычно подразумевают восстановление амальгамами щелочных металлов. Этот метод давно и довольно широко применяется в лабораторном органическом синтезе, а некоторые соединения восстанавливаются амальгамами и в промышленных масштабах. В связи с тем что в настоящее время во всех крупных странах мира преимущественное развитие получает электрохимический метод производства хлора и каустической соды с ртутными катодами, при котором в качестве промежуточных продуктов образуются огромные количества амальгам щелочных металлов и, в частности, амальгамы натрия [1, 2], все настоятельнее становится необходимость более широкого внедрения амальгамного способа восстановления органических соединений в промышленность. [c.219]


    Владимир Ильич Ленин в 1920 г. сказал Мы должны иметь новую техническую базу для нового экономического строительства. Этой новой технической базой является электричество. Мы должны будем на этой базе иметь все . Этот ленинский завет успешно выполняется, и к настоящему времени в нашей стране создана мощная электротехническая база, способствующая развитию всех основных отраслей современной техники, в том числе и крупной электрохимической промышленности. Одним из основных многотоннажных производств последней является получение хлора и каустической соды путем электролиза поваренной соли в ваннах с ртутными катодами. При этом в виде промежуточного продукта образуются огромные количества амальгамы натрия, обладающей сильными восстановительными свойствами. Естественно поэтому, что применение амальгамы натрия для восстановления неорганических и органических соединений является весьма актуальной задачей науки и техники. Решению этой задачи должен помочь обзор по амальгамному гидрированию неорганических и органических соединений, содержащий сводку наиболее интересных реакций, которые могут быть осуществлены с помощью амальгам щелочных металлов, и излагающий современное представление о механизме амальгамного способа восстановления и о возможностях этого метода. Такого полного обзора в химической литературе нет, а по механизму амальгамного восстановления существуют самые противоречивые мнения. [c.3]

    Однако исследования по созданию новых химических методов производства хлора не прекращаются. Разрабатывается химический способ одновременного получения хлора, кальцинированной и каустической соды и азотно-калийных удобрений, который при успешном решении проблем технологического и аппаратурного оформления процесса, а также защиты от коррозии может привести к созданию крупнотоннажного, экономичного, безотходного производства — серьезного конкурента электрохимическому методу получения хлора и каустической соды. В других областях электрохимические способы развиваются параллельно с химическими, оказываясь менее экономичными, уступают место химическим методам. К таким производствам относятся получение перекиси водорода и перборатов, водорода для синтеза аммиака и другие [1,5]. [c.12]

    До 1890 г. хлор и каустическую соду вырабатывали исключительно химическими способами. Хлор получали путем окисления соляной кислоты по способу Вельдона или хлористого водорода по способу Дикона, а едкий натр путем каустификации раствора кальцинированной соды известью или ферритным методом (метод Левига). Электрохимический способ получения едкого натра и хлора впервые был открыт Деви в 1807 г. при пропускании постоянного электрического тока через водный раствор поваренной соли. Промышленное производство каустической соды и хлора электрохимическими методами началось в 1890 г. и очень быстро почти полностью вытеснило старые химические способы производства. Доля производства каустической соды химическим способом в Советском Союзе в 1965 г. ориентировочно состави.ча 14, а в 1972 г. — 11%. [c.7]

    В книге подробно рассмотрен подход к выбору материалов для электродов. Кратко изложены физпко-химпческие, электрохимические и коррозионные свойства электродных материалов. Оппсаны способы изготовления электродов, псиользуемых в основных электрохимических производствах (получение хлора, каустической соды, хлоратов, перхлоратов, перекпсп водорода, электролиз воды, соляной кислоты II морской воды) приведены эксплуатационные характеристики электродов. Основное внимание уделено анодам с активным слоем из двуокпси рутения, платиновым и платцнотитаиовым анодам, а также электродам, полученным ири нанесении на титановую основу окислов неблагородных металлов (свинца, марганца, железа и др.). Рассмотрено в.лпяние выбора материала и конструкции анодов на электрохимические показатели электрохимических производств. [c.2]

    Первый патент на электрохимический метод производства хлора был выдан в 1879 г. русским изобретателям И. Глухову и Ф. Ващуку. Б 1897 г. С. Степанов получил патент на аппарат для электролиза хлористого натрия. Промышленное производство хлора электрохимическим путем стало возможно в 80-х годах прошлого века, когда была разработана стойкая пористая цементная диафрагма, пригодная для разделения образующихся при электролизе хлора, водорода и каустической соды. Несколько позже был предложен способ электролиза с ртутным катодом. [c.131]

    В пp )MыпJлeннo ги для получения каустической соды i меняются электрохимический способ и химический. Химича метод практически утратил свое значение и в СССР практ ски не применяется. В настооттее время электрохимический тод является основным в производстве хлора и каустиче соды. [c.400]

    Как известно, вначале для производства хлора использовались способы окисления соляной кислоты перекисью марганца (способ Вельдона) или воздухом в присутствии катализаторов (способ Дикона). В начале XX века эти способы были полностью вытеснены электролизом водных растворов поваренной соли. При производстве хлора электрохимическими методами с твердым катодом и диафрагмой и с ртутным катодом получались одновременно эквивалентные количества каустической соды или едкого кали при электролизе растворов KG1. В течение длительного времени потребности народного хозяйства в каустической соде превышали потребность в хлоре и недостаюш ее количество каустической соды производилось химическим способом из кальцинированной соды. Однако применение во многих отраслях народного хозяйства широкого ассортимента различных хлорпродуктов привело к необходимости очень быстрого развития производства хлора и его производных. При этом потребность в хлоре росла быстрее, чем в каустической соде [1—4], и вновь возник интерес к химическим методам производства хлора, поскольку они не связаны с одновременным получением каустической соды. [c.280]

    Даже при малых концентрациях гипохлорита натрия (10—15 г/л) расход электроэнергии примерно в 2 раз 1, а Na l в 6—10 раз выше, чем при химическом методе получения гипохлорита натрия из каустической соды и элементарного хлора. Поэтому электрохимический способ получения гипохлорита натрия не нашел широкого применения в промышленности, онч имеет важное техническое значение лишь как одна из стадий производства хлоратов электрохимическим способом. [c.384]

    Получение хлорида кальция из отходов других производств [7, 11]. Значительную долю товарного хлорида кальция получают как побочный продукт производств кальцинированной соды, гипохлорита кальция и бертолетовой соли. Последние два источника мало перспективны. Химический способ получения хлората калия хлорированием известкового молока, при котором в маточных щелоках содержится много СаСЬ, применяют довольно редко. Бертолетову соль целесообразно получать электрохимическим способом. В производстве гипохлорита кальция преобладающее значение получил известково-каустический способ. При этом способе маточные растворы, содержащие Са(СЮ)2 и Na l, лучше перерабатывать на сухой низкопроцентный гипохлорит кальция [8]. [c.98]

    Электрохимический метод производства хлора, водорода й каустической соды осуществляется двумя способами диафрагменным —в электролитйческих ваннах с твердым катодом и пористой асбестовой диафрагмой, отделяющей катодное пространство от анодного, и ртутным — в электролитических ваннах с двйжущймсй ртутным катодом. [c.6]

    Использование ионообменных мембран с селективной проницаемостью открывает широкие возможности получения электрохимическими способами чистых продуктов. При применении КОМ с селективной проницаемостью для катионов (ионов натрия) при производстве хлора и каустической соды отпадает необходимость в протоке электролита из анодного пространства в катодное. При подаче в катодное пространство чистой воды можно электролизом растворов поваренной соли получать каустическую соду с малым содержанием загрязняющих примесей. Содержание в каустической соде хлоридов и других примесей зависит от селективности катионообменной мембраны и возможных нарушений ее целостности. [c.220]

    Марганцовые руды и двуокись марганца применяются в производстве стекла, в керамической промышленности для изготовления глазури, для придания изделиям пурпурного или коричневого оттенка, а также для приготовления фиолетово-черной эмалевой краски и эмалирования железных изделий. Соединения марганца широко используются в лакокрасочной промышленности для изготовления сиккативов и в качестве красящих пигментов (углекислый марганец—марганцовый белый, окись марганца—-марганцовый зеленый, метафосфат марганца — марганцовый фиолетовый и двуокись марганца — марганцовый черный). Предложено использовать марганцовые руды и получающиеся при их обогащении шламы для очистки газов от сероводорода с получением серы для обессеривания сульфида натрия с получением каустической соды Искусственную двуокись марганца, изготовленную электрохимическим способом и специальной обработкой пиролюзита (ГАП — гипховский активированный пиролюзит), используют главным образом в элементной промышленности, как обладающую хорошими деполяризующими свойствами. Емкость гальванических элементов, изготовленных на ГАПе, на 15—20% выше, чем элементов, изготовленных на электролитической двуокиси марганца. Особенно ценным свойством элементов, изготовленных на ГАПе, является их сохранность в течение длительного времени — до двух лет. [c.517]


Смотреть страницы где упоминается термин Электрохимический способ производства каустической соды: [c.757]    [c.9]    [c.165]    [c.46]    [c.72]    [c.14]    [c.757]   
Смотреть главы в:

Производство каустической соды химическими способами -> Электрохимический способ производства каустической соды




ПОИСК





Смотрите так же термины и статьи:

Каустическая сода

Производство соды

Сода сода

Сода электрохимическим

Электрохимические способы производства хлора и каустической соды



© 2025 chem21.info Реклама на сайте