Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термическая очистка поверхности

    Уравнение, применяемое для определения коэффициента теплоотдачи, как было отмечено ранее, выведено в предположении, что теплопередающая стенка является чистой. Если же поверхность покрыта тонким слоем органических или неорганических, вязких, твердых, растворимых, труднорастворимых или нерастворимых отложений, то тем самым создаются условия теплопередачи через составную многослойную стенку. При теплопередаче в этом случае термические сопротивления составных частей стенки складываются. К толщине металлической стенки, обладающей большой теплопроводностью, добавляется слой загрязнения или инкрустации. В большинстве случаев этот слой является тонким, но теплопроводимость его, однако, мала и лежит в пределах X = = 0,3 2,0 ккал/м час°С. Воздействие этих слоев на коэффициент теплопередачи при больших значениях коэффициентов теплопередачи значительно. Примером являются испарители, у которых инкрустация, выделяющаяся из упариваемого раствора, образуется почти всегда. В случае образования инкрустации необходимы специальные меры предосторожности и очистки поверхности во время работы. Характер этих мероприятий различен в зависимости от вида работы, производственных и иных условий. Исходная шероховатость поверхности благоприятствует осадке примесей и образованию инкрустации. Поверхность полированной трубки, в особенности хромированной, эмалированной или лакированной, обладает значительно более благоприятными свойствами. [c.158]


    Очистку поверхности металла можно осуществлять разными способами механически (обработка ручным или механизированным инструментом, струйная очистка, полирование и шлифование), термически (обжиг), химически и электрохимически (отмывка, обезжиривание, удаление ржавчины, травление). [c.124]

    Термическая очистка поверхности основана на использовании различия в коэффициентах линейного теплового расширения металла и загрязняющей его пленки или накипи. При изменении температуры поверхности загрязнения отслаиваются и уносятся затем струей промывной воды или продуваемого воздуха. Таким образом удается [c.326]

    Термическая очистка поверхности [c.150]

    ДРУГИЕ МЕТОДЫ. При термической очистке окалина спекается и отслаивается от поверхности в результате нагревания кислородно-ацетиленовой горелкой. Можно использовать также атмосферное воздействие в течение нескольких недель или месяцев при этом на поверхности происходит естественное образование ржавчины, способствующее отслаиванию окалины, которая затем [c.253]

    Большое затруднение при расчете теплообменной аппаратуры вызывает учет влияния загрязнений. Характер грязевых отложений, их толщина, а следовательно, и их термическое сопротивление (бД)гр, зависят от факторов, трудно поддающихся учету характера сырья, температурных условий, скорости потока, конструктивных особенностей аппарата, условий коррозии поверхности теплообмена, условий эксплуатации — применение периодической продувки теплообменной аппаратуры паром, своевременность и качество очистки поверхности теплообмена от грязевых отложений и т. п. [c.467]

    Если значения частных термических сопротивлений различны, то для интенсификации теплопередачи следует уменьшать наибольшее из них. При этом достигаемый эффект тем больше, чем значительнее это сопротивление превышает другие. Так, например, если определяющим является термическое сопротивление слоя загрязнений на стенке аппарата, то увеличить теплопередачу можно путем уменьшения толщины слоя за счет, например, периодической очистки поверхности нагрева. [c.298]

    Интересно использование термической диссоциации хлорида аммония при очистке поверхности паяльника. [c.326]

    Отливки шарошек после отрезки прибыли и очистки поверхности и внутренней полости на дробеструйном аппарате подвергают химико-термической обработке цементации ири температуре 920—940° С в течение 17—20 ч, первый— закалке с 880—900° С в масле, второй закалке с 720—740° С в масле и отпуску при 180—200° С. [c.93]


    Немаловажное значение на интенсивность и характер роста плотных отложений имеет сам метод очистки. При паровой и водяной очистке поверхностей нагрева парогенераторов с использованием вращающихся обдувочных аппаратов динамическое и термическое воздействие обдувочных струй на отложения при увеличении расстояния от сопла быстро уменьшается и пропорционально этому толщина плотных отложений увеличивается. Если силовые импульсы и градиент температур являются большими, то могут возникнуть условия, когда трубы поверхностей нагрева очищаются от отложений полностью. Очевидно, что в таком случае очистительные силы превышают силы сцепления частиц золы с поверхностью. Уплотняющее действие сил, воздействующих на отложения при виброочистке и дробеочистке, является более равномерным, т. е. трубы покрываются более равномерно плотными золовыми отложениями, чем при паровой или водяной обдувке с вращающихся аппаратов. [c.136]

    При очистке поверхности нагрева паровой или воздуш ной обдувкой удаление золовых отложений происходит преимущественно под действием силового и истирающего действия струи, при водяной об мыв-ке — под влиянием термического действия струи, а при виброочистке — за счет инерционных сил. Следовательно, в зависимости от способа очистки удаление отложений обуславливается силами различной природы. [c.267]

    Используют также термическую регенерацию поверхности электродов. После нагревания платиновых электродов до 600-1000 °С эти электроды восстанавливают свои свойства и становятся каталитически активными. Активирование стеклоуглерода осуществляют при температуре 3000 °С. Хорошие результаты достигнуты при активации поверхности стеклоуглеродных электродов с помощью лазера. При этом свойства электродов существенно улучшаются, что связывают с более тщательной очисткой их поверхности от загрязняющих веществ. [c.92]

    После воздушного разделения 10 и холодильника ХОС-1 масса направляется в пневматический разделитель PR. Он позволяет объединить два процесса — термической и мокрой обработки массы для очистки поверхности гранул. Устройство использует подающийся сжатый воздух в качестве движущей силы и частицы песка как абразивный материал. [c.152]

    Очистка поверхности термическим, гидроабразивным и ультразвуковым способами не получила широкого распространения из-за малой эффективности, неоднородности получаемой поверхности, сложности, больших затрат времени и средств. [c.23]

    Для успешных исследований методом ионного проектора объект должен иметь радиус порядка 1000 А или менее. При этом умеренные величины напряжения — порядка 10—20 кв — достаточны, чтобы без опасности пробоя получить поля, необходимые для возникновения изображения. Такое условие исключает необходимость термообработки для удаления загрязнений, поскольку энергии активации десорбции кислорода, водорода, азота и окиси углерода превышают энергию активации поверхностной миграции даже для вольфрама. Уже воздействие одной только термической десорбции способно быстро вывести эмиттер из строя. Однако для очистки поверхности можно использовать само поле. [c.220]

    На установках термического крекинга должны быть увеличены поверхности конденсации (что позволит более четко разделить газообразную и жидкую фазы), улучшено качество охлаждающей во ды, организована профилактическая очистка поверхностей. На этих же установках необходимо предусмотреть использование газов из сепаратора низкого давления, которые сбрасываются в топливную линию или на факел. [c.30]

    Термический метод очистки поверхностей, часто называемый огневой очисткой, используется главным образом при ремонтно-реставрационных работах. [c.135]

    Термическая (пламенная) очистка. Поверхность изделия обрабатывают пламенем кислородно-ацетиленовой горелки. Образующаяся при этом окисная пленка растрескивается, что обусловлено различием коэфф. линейного расширения металла и его окислов, и отслаивается. Остатки окислов удаляют проволочной щеткой. Поверхность, остывшую до 50—70 °С, грунтуют. Метод применяют для изделий с толщиной стенки не менее 3 мм, покрытых толстым слоем окалины, ржавчины или старым Л. п. [c.6]

    Очистка поверхности от окалины и ржавчины может быть осуществлена механической, химической (или электрохимической) и термической обработкой. [c.73]

    Полная очистка поверхностей аппаратуры под осмотр или ремонт не ограничивается одними лишь указанными выше предварительными мероприятиями и осуществляется механическими, химическими и реже термическими методами, разработанными в разнообразных вариантах. [c.324]

    Противокоррозионная защита. Предварительная подготовка поверхности. Механическая и термическая очистка стальной поверхности от окалины и ржавчины) [c.211]

    Термическая очистка. Термическая очистка металлической поверхности заключается в выжигании загрязнений пламенем кислородно-ацетиленовой или керосино-кислородной горелки (рис. 45). [c.99]

    Описаны термические методы очистки поверхности металлов путем отжига изделий в атмосфере водорода, окислительно-восстановительный отжиг, являющийся наиболее качественным и производительным [35, 47]. Существуют методы обработки поверхности металлов ионной бомбардировкой [35, 48], пламенем, тлеющим коронным разрядом при пониженном давлении, струей ионизированного газа [35]. [c.17]


    Для удаления окалины, ржавчины и особенно старой краски иногда применяют термическую обработку поверхности, т. е. выжигание загрязнений пламенем кислородно-ацетиленовых или керосиново-кислородных горелок. При термическом способе очистки окалина легко растрескивается и отслаивается от металла, а ржавчина разрыхляется и легко удаляется проволочной щеткой. Термический способ очистки металла экономичен и отличается большой производительностью, но его нельзя применять во избежание коробления металла для очистки аппаратов, имеющих толщину стенок меньше 5 мм. Кроме того, всегда надо учитывать пожарную опасность термического способа. [c.159]

    Из физических методов наиболее широкое применение в аппаратостроении находят термические способы очистки. Поверхность нагревается до гемпературы 150 С. Отделение окалины происходит вследсгвие различия коэффициентов линейного расширения сга ги и окислов мсталла. При нагреве происходит обезвоживание ржавчины. 13 результате окалина растрескиваст ся и легко отслаивается вместе с ржавчиной. Остатки окислов удаляют металлическими щетками. Наиболее распространен способ газопламенной очисз ки, когда нагрев выполняется многопламенной горелкой, вмонтированной на роликовых опорах. [c.93]

    Более серьезной проблемой является борьба с механическими примесями, которые, оседая на поверхности нагрева, образуют слой с большим термическим сопротивлением. Для борьбы с этим создаются сепарирующие устройства или устройства, обаоиечива-ющие частую очистку поверхности нагрева. Для удаления примесей из пара существуют различные способы, например, осаждение под действие.м электричества и т. п. Однако, как правило, все способы очистки пара или поверхности нагрева, за редким исключением, сложны, дорогостоящи и нерентабельны. [c.274]

    Оуществуоцив способы очистки поверхности подравдвля-стся на три основные группи механические, химические, термические. [c.63]

    До проведения собственно расчета трубчатых теплообменников следует установить целесообразность направления одного из теплоносителей в трубное, а другого—в межтрубное пространство аппарата. Выбор пространства для движения теплоносителя в поверхностном теплообменнике любого типа производят, исходя из необходимости улучшить условия теплоотдачи со стороны теплоносителя с ббльшим термическим сопротивлением. Поэтому жидкость (или газ), расход которой меньше нли которая обладает большей вязкостью, рекомендуется направлять в то пространство, где ее скорость будет выше, например в трубное, а не в межтрубное пространство одноходового кожухотрубчатого теплообменника. В трубное пространство целесообразно направлять также теплоносители, содержащие твердые взвеси и загрязнения, с тем чтобы облегчить очистку поверхности теплообмена теплоносители, находящиеся под избыточным давлением (по соображениям механической прочности аппарата), и, наконец, химически активные вещества, так как в этом случае для изготовления корпуса теплообменника не требуется дорогого коррозионностойкого материала. Следует учитывать также, что при направлении нагревающего теплоносителя в трубы уменьшаются потери тепла в окружающую среду. [c.340]

    Очистка поверхности огневым (термическим) методом заключается в воздействии на очищаемую поверхность пламени ацетилено-кислородной горелки или паяльной лампы. Окалина при этом растрескивается и отслаивается от металла, а ржавчина разрыхляется. Если на очищаемой поверхности было ЛКП, то оно сгорает. Данный метод разрешается применять лишь для изделий, толщина стенок которых не менее 5 мм. Пламя горелки должно быть с избытком кислорода до 30 %. Скорость передвижения горелки —около 1 м/мин. После огневой очистки поверхность доочищают сначала мягкими проволочными щетками, а затем чистой ветошью. [c.91]

    Котлы ТГМП-114 и ТГМП-314 работали на сернистом мазуте (8Р=2,5-ьЗ,0%, Лр=0,3%) без ввода присадок при а= 1,02ч-1,03. Очистка поверхностей нагрева конвективной шахты производилась дробью. РВП на всех котлах подвергались ежесуточно термической сушке при. температуре газов 240—270 °С в течение 30 мин. Температура газов за РВП составляла при номинальной нагрузке 140—150 °С, перед РВП температура воздуха 60—70 °С. При пусках котла калориферы включаются до растопки, а дымовые газы до температуры 180 С за экономайзером пропускаются через байпас РВП. Количество пусков за год достигало на отдельных котлах 28. В этих условиях межпромывочный период составлял 3 мес. Сопротивление РВП по воздуху за это время возрастало до 1,2—1,3 кПа. [c.179]

    При тепловой обработке многих рабочих сред на теплопередающих стенках остаются различные отложения, которые препятствуют процессу теплопередачи. Кроме того, при тепловой обработке термически нестойких продуктов на стенках образуется пригар. В этих случаях необходимо часто разбирать аппарат для очистки поверхности теплообмена от слоя прпгара, осадка нлп остатков продукта под надежным визуальным контролем. [c.20]

    Для очень тугоплавких металлов (особенно для вольфрама) эффективным является нагрев до высоких температур в ультравысоком вакууме с использованием омического нагрева или электронной бомбардировки [115]. Этот метод был с успехом использован для кремния [116] и никеля [117]. Однако если загрязнения диффундируют к поверхности и не испаряются при достигнутой температуре, то этот метод становится малоэффективным. В подобных случаях возможно использование газа, взаимодействие которого с примесями будет приводить к образованию более летучего соединения. Ландер и Моррисон [118] нашли, что пары иода эффективны для очистки поверхностей германия и кремния. И наоборот, нагрев может вызвать диффузию поверхностных примесей в глубь кристалла, в результате чего остается фактически чистая, приемлемая для определенных целей поверхность, однако с загрязнениями, находящимися непосредственно под поверхностью и способными оказывать влияние на результаты других опытов [119]. Как и в случае других рассматриваемых здесь методов, при использовании методов термической обработки, которые часто сочетаются с иными методами очистки, необходимо соблюдать большую осторожность. [c.143]

    Подготовка поверхности металла к покрытию состоит в удалении с нее окалины, окислов, масел и других загрязнений. Кроме того, применяют очистку поверхности как промежуточную операцию при производстве металлических слитков или заготовок после их термической обработки, а также при производстве листов, лент, проволоки и других изделий. Часто изделия и полуфабрикаты, поступающие для хранения на склад или в продажу, подвергают химическим операциям с целью повышения коррозионной стойкооти металла или для придания продукции декоративного В(ида. [c.87]


Смотреть страницы где упоминается термин Термическая очистка поверхности: [c.272]    [c.170]    [c.699]    [c.155]   
Смотреть главы в:

Коррозия и защита металлов -> Термическая очистка поверхности


Неметаллические химически стойкие материалы (1952) -- [ c.211 ]




ПОИСК





Смотрите так же термины и статьи:

Очистка поверхности

Очистка термическая



© 2025 chem21.info Реклама на сайте