Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углы краевые влияние ПАВ

    На краевой угол заметное влияние оказывает и состав жидкости при этом нередко наблюдаются регулярные зависимости типа приведенной на рис. VII-14 (обратите внимание также на работу [69]). Разумеется, в присутствии растворенных поверхностно-активных веществ краевой угол может меняться чрезвычайно сильно. Мы уже говорили о системе гексадеканол в парафиновом масле на 4%-ном силикагеле в качестве твердого тела (см. рис. VII-11), Резкое увеличение у о os 0 хорошо совпадает с штриховой кривой, рассчитанной по полученным независимым способом данным  [c.285]


    Адсорбция и поверхностное натяжение. Граничный слой жидкости оказывает влияние на краевой угол. Краевой угол образуется не с самой поверхностью твердого тела, а с покрывающим ее граничным слоем жидкости [c.165]

    На форму капли оказывают влияние не только поверхностные, нон гравитационные силы. При большой разности плотностей смачивающих жидкостей форма капли под воздействием выталкивающей силы сильно отличается от сферической. В этом случае краевой угол не может служить объективным показателем смачивания. Однако влияние выталкивающей силы велико только для капель большого размера. Для капель радиусом 0,39—0,60 мм краевой угол смачивания даже на воздухе, где разность плотностей гораздо больше, чем в условиях избирательного смачивания, практически не зависит от размера капель [64]. В результате теоретических и экспериментальных исследований кинетики растекания капли найдено [208], что влиянием гравитационной силы можно пренебречь, если линейный размер капли [c.166]

    Весьма существенное влияние на процессы гетерокоагуляции оказывают поверхностные свойства пеков. Обычно чем меньше краевой угол смачивания, тем лучше пек смачивает твердую поверхность. Если молекулы компонентов нефтяного пека взаимодействуют с поверхностью углеродистого материала сильнее, чем между собой, то жидкость растекается по поверхности, или смачивает ее. При неполном смачивании капля образует с поверхностью углерода определенный равновесный угол, называемый краевым углом, или углом смачивания. Если угол 90°, то это положительный угол, или положительное смачивание. [c.69]

    Влияние шероховатости на равновесный краевой угол легко учесть при условии, что размер капли значительно больше средне- го размера выступов и впадин на поверхности. Так как в уравнении Юнга (I. 121) составляющие поверхностного натяжения на грани- це с твердым телом будут в К раз больше, то можно записать  [c.75]

Таблица I. 4. Экспериментальные и расчетные данные исследования влияния электрического потенциала на. краевой угол Таблица I. 4. Экспериментальные и <a href="/info/579302">расчетные данные</a> исследования <a href="/info/1011903">влияния электрического потенциала</a> на. краевой угол

    На краевой угол влияют длина цепочки ПАВ и pH, если его концентрация выражена в молях. Иначе говоря, влияние оказывает и концентрация ПАВ. Если ПАВ имеют длинные углеводородные цепочки, то краевой угол возрастает почти до 180°, так что [c.180]

    На значение напряжения на электролизере сложное влияние оказывает материал электродов. Природа металла, как и состояние электродной поверхности, имеет прямое отношение к перенапряжению электродной реакции. С другой стороны, имеется тесная связь природы электродного материала со значением краевого угла на границе раздела фаз газ — электролит— электрод , определяющего смачиваемость электродной поверхности электролитом. Чем ближе электродный потенциал к потенциалу нулевого заряда материала электрода, тем больше краевой угол и хуже смачиваемость, тем крупнее газовые пузыри и ниже их экранирующий эффект. Все это приводит к уменьшению газонаполнения и снижению напряжения на электролизере. [c.158]

    Большое влияние на адсорбируемость того или иного растворен ного вещества оказывает не только его природа, но и природа ад сорбента и растворителя. Этот вопрос подробно был изучен многи ми учеными, в частности А. А. Титовым, Л. В. Гуревичем, П. А. Ре биндером и др. Рассмотрим более подробно зависимость адсорбции от свойств твердой поверхности и природы растворителя. В этом случае следует особо отметить свойство смачивания. Если на твердую поверхность нанести каплю воды, возможны три случая 1) капля растекается по поверхности 2) капля остается на поверхности в виде шарика 3) капля растекается лишь частично, образуя с поверхностью некоторый так называемый краевой угол (рис. 108). [c.359]

    Влияние шероховатости поверхности на гистерезисные явления можно объяснить следующим образом. Когда капля подходит к краю канавки или царапины и начинает переливаться в нее, кажущийся краевой угол йк по отношению к идеализированной плоской поверхности твердого тела (пунктирная линия на рис. III—15) должен заметно увеличиться по сравнению с истинным краевым углом в. При большом числе канавок на поверхности твердого тела это приводит к отличию среднего угла натекания от угла оттекания. [c.101]

    Исследование влияния поверхностно активных веществ на смачиваемость катодного цинка электролитом показало, что добавки, адсорбируясь на катоде, весьма существенно меняют величину краевого угла, при этом полярно асимметричные гидрофобные органические вещества увеличивают краевой угол, гидрофильные — уменьшают его. Если краевой угол мал, что указывает на хорошую смачиваемость поверхности металла электролитом, то пузырек газа легко отрывается от металла, не успев вырасти. Наоборот, с ростом краевого угла периметр прикрепления пузырька к поверхности катода увеличивается, в результате чего его размеры становятся значительными. Следствием этого является образование ячеистых осадков металла, при этом глубина и размеры ячеек зависят от степени прилипания пузырьков газа к поверхности цинка. [c.221]

    Работа адгезии расплава к металлизированной керамике довольно существенна и составляет величину 2040 2140 2165 2200 и 2410 соответственно для ПМГ-12, № 446, № 442, № 432, № 439 при температуре плавления. При выдержке припоя в контакте с пластинкой в течение 5 сек увеличение адгезии при возрастании температуры над точкой плавления до 50° С составляет примерно 10— 20 мдж/м , а при увеличении времени выдержки до 25 сек работа адгезии повышается, однако разница между адгезией при температуре плавления и перегревом в 50° С остается практически такой же. Следовательно, время выдержки и температура перегрева сплава над точкой плавления не оказывают существенного влияния на увеличение работы адгезии, в то время как краевой угол смачивания изменяется весьма существенно, т. е. для данного покрытия Мо — Мп наиболее целесообразными будут те технологические условия, когда припой достаточно жидкотекуч, высока адгезия и 0 удобен для пайки. Вышесказанное можно охарактеризовать параметрами 0 = 15 20°, Т + 20° С. Время выдержки [c.67]

    Замерить краевой угол 0 в пористой среде в динамике прямыми методами не представляется возможным, так как 0 меняется от точки к точке норового канала и, кроме того, в динамике существенное влияние оказывает гистерезис смачивания. Поэтому нами была сделана попытка, используя данные по противоточной капиллярной пропитке, оценить среднее значение смачиваемости пористых сред при различной водонасыщенности [31]. [c.25]

    Некоторые вопросы влияния деформации сдвига на поверхностное натяжение и краевой угол смачивания твердых электродов были рассмотрены в последнее время Русановым [104]. [c.238]

    Уточнение термодинамической трактовки реальных кристаллических поверхностей может быть достигнуто путем учета линейной энергии ребер. Еще Гиббс обратил внимание на необходимость существования линейного натяжения трехфазных границ контакта, могущего иметь как положительное, так и отрицательное значение. Эта идея была развита в фундаментальных работах Шелудко [5], показавшего роль линейного натяжения в процессах образования двухфазных контактов при смачивании, прилипании пузырьков и гетерогенной нуклеации, например при электрокристаллизации. Из соответствующих наблюдений оказалось возможным определить величину и знак линейного натяжения. Теория линейного натяжения на периметре смачивания была развита в работах [6, 7]. Для реальных тел формула, выражающая влияние шероховатости подложки на краевой угол, была предложена Венцелем [8] и более строго обоснована одним из нас [9]. [c.8]


    Образование зародышей на стенках тигля зависит от газовой среды в печи, что связано с влиянием газов на смачиваемость железа слюдяным расплавом. Так, в водородной среде материал тигля хуже смачивается (краевой угол 0 около 90°), чем в азоте и аргоне. Это способствует достижению более значительного переохлаждения расплава и более массовому характеру кристаллизации. Чем меньше краевой угол смачивания, тем легче происходит образование зародыша, и уже при 0 — 45° высота потенциального барьера для зарождения на поверхности на порядок меньше, чем для зарождения в объеме. При гетерогенном зарождении кристаллов расплав слюды характеризуется высокой кристаллизационной способностью. Максимальная скорость зародышеобразования по данным подсчета центров кристаллизации (сфе-ролитов) в образцах, полученных в условиях переохлаждения на несколько десятков градусов, составляет примерно 100 зародышей на 1 см2 поверхности в течение 1 с. [c.39]

    На адгезионные свойства покрытий могут влиять и малые добавки веществ, обладающих поверхностно-активными свойствами. Особенно существенно пх влияние в случае порошковых красок, пленкообразование из которых происходит при плавлении и коалесценции частиц, обеспечивающих растекание расплава по поверхности окрашиваемого изделия. В качестве примера ниже показано влияние добавки акрилового сополимера АК-607-23 на краевой угол смачивания 0 и адгезию к алю- [c.194]

    Экспериментальная проверка уравнения (1.22) проведена для смачивающих а-пленок воды на поверхности кварцевых капилляров на участке между менисками, находящимися при различной температуре [62]. По известным для воды значениям (да/дТ) = —1,6-10 Н СМ -град и известным из опытов г и grad Т можно было определить отношение h /ц. Принимая для тонких пленок ti=1,5tio, где т1о — вязкость объемной воды, для серии из 16 опытов в капиллярах радиусом от I до 10 мкм были получены значения h в интервале от 5 до 10 нм, что близко к эллипсометрическим оценкам толщины а-пленок [45]. Разброс значений толщины (от 5 до 10 нм) связан в данном случае с влиянием гистерезиса краевого угла — неполным смачиванием объемной водой а-пленок. Для объяснения наблюдавшегося разброса достаточно допустить, что наступающий угол 0л составляет 8—10°, а отступающий угол 0 близок к 0°, что согласуется с известными экспериментальными данными. [c.30]

    С разрушением особой структуры граничных слоев связан также и известный эффект ухудшения смачивания при повышении температуры [562]. На рис. 13.5 приводятся результаты расчетов изотерм расклинивающего давления смачивающих пленок водного 10 М раствора КС1 с добавками ионогенных ПАВ. Для молекулярных сил принята та же константа А для структурных сил — экспонента IIs= sexp(—/i/Я-), где С = = 10 Н/см и А,=0,25 нм. Исходной, без добавок ПАВ, является изотерма, показанная кривой 6. Потенциалы поверхностей кварца (ii)i) и пленки (ij]2) принимали в этом случае равными —100 мВ и —25 мВ, соответственно. Расчеты по уравнению (13.3) приводят к значению 0о = 8° (см. рис. 13.4). Влияние добавок ПАВ сводилось в проведенных расчетах к изменению потенциала вследствие адсорбции ПАВ на поверхности пленка— газ. Адсорбция анионоактивного ПАВ, повышающая отрицательный потенциал ifi2, приводила к улучшению смачивания. Так, при il]2= —35 мВ рассчитанный краевой угол уменьшается до 7°, а при 11)2 = —45 мВ—до 5°. Дальнейший рост i 52 (кривые 1—<3) обеспечивает уже полное смачивание поверхности кварца. Если же на поверхности пленки адсорбируется катионоактивный ПАВ, заряжающий поверхность пленка — газ положительно (г1)2=+Ю0 мВ), в то время как поверхность подложки остается заряженной отрицательно, краевой угол растет до 28° в связи с тем, что электростатические силы вызывают притяжение поверхностей пленки (Пе<0). Полученные результаты находятся в хорошем согласии с результатами прямых измерений краевых углов растворов КС1 с добавками анионоактивного натрийдодецилсульфата и катионоактивного цетилтриметиламмонийбромида [563]. [c.220]

    В работе [3] показано, что степень шероховатости подложки несущественно сказывается на величине краевого угла смачивания, если средняя высота неровностей рельефа находится в пределах 0,01—0,2 мкм. Поэтому в данной работе достигалась такая чистота поверхности смачиваемого материала, при которой влиянием ее неровностей можно пренебречь. Пластины, ишользуемые в качестве подложки, полировали до чистоты поверхности У9—10, промывали в спирте и п рокал Ивали три температуре 700—900°С. Краевой угол измеряли в интервале температур от плавления меди до перегрева капли на 300°С. [c.140]

Рис. 4. Влияние атмосферы и температуры подогрева подложки иэ графита марки ГМЗ на краевой угол смачивачия пря контактном взаимодействии стали с графитом Рис. 4. <a href="/info/263279">Влияние атмосферы</a> и температуры подогрева подложки иэ графита марки ГМЗ на <a href="/info/4397">краевой угол</a> смачивачия пря <a href="/info/260880">контактном взаимодействии</a> стали с графитом
    Исследование влияния поверхностно активных веществ на смачиваемость катодного цинка электролитом показало, что добавки, адсорбируясь на катоде, весьма существенно меняют величину краевого угла, при этом полярно асимметричные гидрофобные органические вещества увеличивают краевой угол, гид-рофилльные уменьшают его. [c.218]

    При избирательном смачивании (напомним, что в этом случае угол О отсчитывается в более полярной фазе — воде) для водорастворимых ПАВ закономерности их влияния на os О аналогичны рассмотренным выше для смачивания. В отличие от этого, маслорастворимые ПАВ способны только к олеофилизации поверхности за счет их физической адсорбции или хемосорбции на полярной поверхности (см. рис. III—20, кривая 4). При избирательном смачивании гидрофобной поверхности маслорастворимые ПАВ способны к адсорбции только на поверхности вода — масло в этом случае о и увеличивают краевой угол. При гидрофобизации поверхности величина (д, — о )/о может стать меньше i—1 этому отвечает растека- [c.107]

    О влиянии ПАВ на краевой угол смачивания спрессованных порошков и скорость фильтрования/ Барбин М,Б,, Голенищева Э.В., Ива-кива М.А. и др. - Изв.вузов. Цветная огталдургая, 1983, J 4, JttH0 . [c.44]

    Дерягин Б. В. и Щербаков А. Н, О влиянии поверхностных сил на фазовые равновесия полимолекулярных слоев и краевой угол смачивания. Коллоидный журнал, 1961, т. XXIII, № 1, с. 40. [c.251]

    Краевой угол между черной пленкой и углеводородной линзой, строго говоря, не является равновесным вследствие возможного изменения межфазного натяжения, вызванного кривизной линзочки, и возможного вытекания жидкости из линзочки. Анализ показывает, что влияние неравно-весности должно быть ничтожным. Действительно, межфазное натяжение заметно изменяется только при радиусах кривизны 10 — 10 см [116], в то время как линзочки но размеру обычно более 20—25 мк скорость вытекания через черную пленку очень мала и может создать разницу в натяжении не более 10 дин см, что подтверждается экспериментально. [c.84]

    Результаты исследований по влиянию ПАВ на капиллярные процессы, освещенные в работах последних лет, носят противоречивый характер. Некоторые исследователи изменение величины капиллярных сил ставят в прямую зависимость от изменения напряжения смачиваемости а os0, где 0-статический краевой угол и о - межфазное натяжение, замеренное также в статических условиях. С целью увеличения капиллярных сил предлагается применять препараты, улучшающие смачиваемость системы твердое тело - вода - нефть , не снижая сильно межфазного натяжения. Между тем, эксперименты по капиллярной пропитке показывают, [c.41]

    Обычная термодинамическая трактовка случая III предполагает поверхность раздела фаз столь же идеально гладкой, как и в случае контакта флюидов. Поэтому применять выводы этой трактовки к реальным ситуациям следует с осторожностью. Особенностью кристаллических тел является анизотропия поверхностного натяжения — его зависимость на данной грани от направления (в противоположность свободной поверхностной энергии). Поверхностное натяжение может также меняться в зависимости от состояния деформации твердого тела, В работе Русанова [4] рассмотрено влияние деформации на краевой угол, что открывает возможность экспериментального обнаружения этого эффекта на эластичных телах, хотя и не позво.пяет определять абсолютные значения поверхностного натяжения. [c.8]

    Изучено влияние эмульгаторов и их смесей на показатели качества эмульсии гербицида антигор фракционный состав дисперсной фазы, краевой угол смачивания, поверхностное натяжение, количество коагулята, время самопроизвольного эмульгирования. Подтверждена корреляция между качеством эмульсии, гербицидной активностью и экологической безопасностьюю [c.86]

    Влияние многих физико-химических факторов на смачивание в значительной степени зависит от того, к какой группе относится та или иная система. Например, для систем с преобладанием химических связей, характерна сильная зависимость краевых углов от температуры, что приводит к появлению порога с.мачивания. При нагреве выше пороговой температуры, краевой угол резко у 1еньшается вследствие значительного возрастания работы адгезии [c.97]


Библиография для Углы краевые влияние ПАВ: [c.42]   
Смотреть страницы где упоминается термин Углы краевые влияние ПАВ: [c.179]    [c.179]    [c.67]    [c.25]    [c.32]    [c.49]    [c.58]    [c.86]    [c.56]    [c.220]    [c.581]   
Физико-химические основы смачивания и растекания (1976) -- [ c.174 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние различных факторов на краевой угол

Изменение краевого угла под влиянием посторонних веществ, адсорбированных на твердой поверхности

Краевой угол

Краевой угол влияние вакуума

Краевой угол влияние поверхностно-активных веществ

Шероховатость поверхностей, влияние на краевой угол



© 2025 chem21.info Реклама на сайте