Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Совместное осаждение

    Совместное осаждение из раствора носителя и катализатора с последующей формовкой и сушкой. [c.316]

    Основным преимуществом описанного метода седиментационного анализа является его высокая точность, так как он позволяет проводить исследования весьма разбавленных суспензий, содержащих 0,2—0,001 вес. % дисперсной фазы. При этих концентрациях полностью исключаются явления коагуляции, вызываемые совместным осаждением частиц различных размеров, неизбежные при осаждении концентрированных суспензий, применяемых в других методах. Недостатками метода являются длительность опытов и вероятность ошибок при графической обработке результатов. [c.25]


    Катализатор получают совместным осаждением нитратов никеля и алюминия бикарбонатом аммония с последующей добавкой нитрата бария [c.70]

    Катализатор получают совместным осаждением окислов никеля и алюминия из растворов солей в присутствии промоторов [c.70]

    Возможность совместного осаждения металлов на катоде так же, как и состав получаемых сплавов, зависит от относительных скоростей восстановления их ионов в данных условиях. [c.432]

    В большинстве случаев при совместном осаждении металлов скорости электрохимических реакций существенно отличаются от скоростей раздельного восстановления ионов. В реальных условиях электроосаждения сплавов необходимо учитывать, кроме указанных выше факторов, влияние изменения природы, состояния и величины поверхности электрода, на которой протекает реакция, строения двойного электрического слоя, состояния ионов в растворе, влияние энергии взаимодействия компонентов при образовании сплава и др. В зависимости от характера и степени влияния этих факторов, скорости восстановления ионов при совместном выделении металлов на катоде могут отклоняться в ту и другую стороны от скоростей раздельного их осаждения. [c.433]

    Методы совместного осаждения золей коллоидных растворов заключаются в их коагуляции с образованием гидрогеля при заданной величине pH смеси растворов. При этом большое значение имеет скорость (время) коагуляции. Между концентрацией водородных ионов (pH) смеси растворов и скоростью совместной коагуляции существует определенная зависимость. [c.46]

    При совместном осаждении солей кремневой кислоты и сернокислого магния в процессе формования алюмо-магний-силикатных катализаторов образуется магний-кремнеземный гель, или магний-силикагель  [c.46]

    Многие катализаторы представляют собой кристаллические окиси металлов [130,131], которые получаются в результате термического разложения кристаллизующихся гидроокисей. На величину поверхности бинарных окисных катализаторов оказывает влияние их химический состав. При совместном осаждении двух гидроокисей степень дисперсности компонентов смеси значительно выше, чем при осаждении чистых веществ [132,133]. [c.85]

    Таким образом в процессе нейтрализации кислых растворов при хорошем перемешивании первой будет выпадать в осадок гидроокись с меньшим значением pH осаждения. Гидроокиси с pH осаждения, близкими по величине, осаждаются одновременно. Совместное осаждение гидроокисей приводит к образованию смешанных кристаллов, внедрению одной гидроокиси в решетку другой, поверхностной адсорбции осадком, образующимся первым, другого осадка. [c.102]

    Промышленные катализаторы гидрирования представляют собой высокодисперсные металлы, обычно нанесенные на пористые носители. Высокой гидрирующей активностью отличаются металлы УП1 и I групп периодической системы элементов (никель, кобальт, платина, палладий, родий, медь и др.). В качестве носителей этих металлов наиболее часто используются окиси алюминия, кремния, цинка, хрома, активный уголь, диатомиты. Находят применение в промышленности и сплавные катализаторы [46, 55]. Готовят катализаторы пропиткой носителя растворами легкоразлагающихся соединений активного металла или же методом их совместного осаждения с носителем [56]. Как правило, перед использованием в процессе катализаторы предварительно восстанавливают. [c.411]


    Катализаторы приготовляют совместным осаждением компонентов в виде гидроокисей и последующей промывкой, сушкой, прокаливанием, измельчением и таблетированием. [c.89]

    Процесс организован таким образом, что на поверхности (или по объему) трехмерного электрода с высокоразвитой поверхностью из углеродного волокнистого материала идет осаждение карбоната кальция и совместное осаждение (или соосаждение) стронция в результате реакций, протекающих при катодной поляризации электрода. [c.95]

    Электрический заряд частичек позволяет наблюдать их направленное движение в электрическом поле. Это свойство может быть использовано для совместного осаждения методом электрофореза графита с различными металлами и полимерами. [c.366]

    Совместному осаждению олова и никеля на катоде в значительной мере способствует также взаимодействие этих металлов, что обусловливает смещение потенциала в сторону электроположительных значений за счет уменьшения парциальной мольной энергии образования сплава типа химического соединения. Как [c.438]

    ВИДНО из рис. ХП-22, совместное осаждение олова и никеля происходит при более электроположительном потенциале, чем раздельное выделение олова и никеля. [c.438]

    При последующем осаждении осадок выделяется в чистом виде, а постороннее, загрязняющее вещество медленно осаждается после того, как осадок уже сформирован, т. е. осадок загрязняется малорастворимым веществом. Например, если осаждать Са - оксалатом аммония в присутствии Mg +, то выделяется осадок СаС204-Нг0, а оксалат магния остается в растворе. Но при выдерживании осадка оксалата кальция под маточным раствором через некоторое время он загрязняется малорастворимым оксалатом магния, который медленно выделяется из раствора. Это происходит потому, что вблизи поверхности осадка за счет адсорбционных сил повышается концентрация С2О4 и превышается ПР оксалата магния. Загрязнения осадков за счет совместного осаждения малорастворимых соединений и последующего осаждения их можно избежать, прибегая к определенным приемам работы. Поэтому в дальнейшем будут рассмотрены лишь случаи загрязнения осадков в результате соосаждения. [c.108]

    В результате реакции комплексообразования определенная доля ионов М"+ (тем большая, чем ниже константа нестойкости) будет присутствовать в растворе в виде сложных ионов МА - и, следовательно, концентрация свободных ионов металла должна уменьшиться. Это уменьшение и, соответственно, сдвиг обратимого потенциала электрода в этрицательную сторону будут тем значительнее, чем меньше констан-га нестойкости и чем выше концентрация добавки. Подбирая соответствующие комнлексообразо-ватели и их концентрации, можно изменить равновесные потенциалы присутствующих в растворе ионов различных металлов таким образом, чтобы обеспечить или их совместное осаждение в виде сплава, или наиболее полное разделение. [c.463]

    Остаточные же продукты депарафинируют в неочищенном виде лишь в исключительных случаях, в частности, тогда, когда применяют процессы, в которых депарафипизация совмещается с очисткой, например, при процессе совместного осаждения смол и парафина серной кислотой, при совместной депарафинизации и деас-фальтизации пропаном и т. д. Однако эти процессы применяют очень редко, и остаточные продукты идут на депарафинизацию, как правило, в очищенном виде. [c.23]

    В общем любой катализатор гидрирования может также применяться и для дегидрирования, но наялучшим катализатором дегидрирования и деметилироваиия является трехокись хрома (СгаОд), нанесенная на носитель или совместно осажденная с носителем (например, оклсыо алюминия). [c.487]

    При длительном контакте катализатор СгаОд А1гОз (полученный совместным осаждением) превращает триметилциклогексены большей частью в смесь всех трех триметилбензолов. Когда промежуточный продукт содержит алкильную группу, большую чем метил, возникают осложнения, вызванные дегидрогенизацией боковой цепи при наличии такой длинной алкильрой группы, как бутил, образуется нафталин. [c.489]

    Рисц с сотрудниками [68] указывают на преимущества катализатора состава 75% AI2O3 — 25% Сг Од, приготовленного путем совместного осаждения, перед катализаторами, приготовленными осаждением GrjOj на активированную окись алюминия. Равновесные выходы в этом случае достигались нри 500° С. Многими исследователями [11, 23, 29, 59] описывается нрименение щелочных или щелочноземельных добавок к катализатору для уменьшения коксообразования. Наиболее часто указывается на добавление с этой целью 1% KgO. Избирательность алюмохромовых катализаторов повышается также путем прокаливания их при высоких температургах для уменьшения коксообразования. [c.196]

    В производстве алюмосиликатных катализаторов и алюмосиликатных адсорбентов гелеобразующими растворами являются жидкое стекло и сернокислый алюминий, в производстве алюмомагнийсиликатных катализаторов — жидкое стекло и сернокислый магний, а в производстве силикагелей — жидкое стекло и серная кислота. При формовании катализаторов применяют метод совместного осаждения коллоидных растворов с добавкой в один из них некоторого количества серной кислоты в сернокислый алюминий 53—56 г/л, а в сернокислый магний 80—82 г/л. [c.46]

    Катализатор получают совместными осаждением 10—30 мас.% никеля с окисью алюминия. Катализатор промоти-рован цинком и хромом, добавленными в количестве 5— 25 мас.%. Может содержать также дополнительные промотируюш,ие добавки Ва, Се, 5г, С5. К Углеводороды Сг—С]о Конверсию углеводородов с водяным паром проводят при температуре 316—496° С Метансодержащий газ [c.128]


    Т абле тированные катализаторы получают методом совместного осаждения гидрогелей окиси кремния и окиси алюминия с последующим формованием их в виде таблеток. Изготовление этих катализаторов обходится значительно дороже, чем природйых, поэтому применяют их главным образом для получения авиационного бензина. Эти катализаторы используют на установках Гудри, работающих с неподвижным слоем катализатора. [c.13]

    Шариковые катализаторы получают также совместным осаждением гидрогелей окиси кремния и окиси алюминия с последующим формованием их в виде шариков. Они значительно дещевле, чем таблетированные, и применяются в процессах каталитического крекинга с подвижным слоем катализатора (термофор) для получения [c.13]

    Синтетические алюмомагнийсиликатные катализаторы при формовании микросфер или крупных шариков получают совместным осаждением гидрогелей окиси кремния и окиси магния с последующей активацией их раствором сернокислого алюминия. Эти катализаторы выгодно отличаются от алюмосиликатных высокой паротермостабиль-ностью. Они могут быть использованы также как носители для катализаторов полимеризации этилена. [c.14]

    Быстрое развитие каталитического крекинга связано с широким применением синтетического алюмосиликатного шарикового катализатора. Шариковый катализатор (85—87% ЗЮг и 13—15% А12О3) сформован методом совместного осаждения смеси гелеобразующих растворов жидкого стекла и подкисленного сернокислого алюминия в минеральном масле. Он весьма активен (индекс активности 37— 39%) 1 успешно используется в каталитическом крекинге с подвижным слоем катализатора. Слой шариков в реакторе оказывает меньшее сопротивление проходу паров, что обусловливает меньшие [c.81]

    Существующие методы синтеза катализаторов крекинга разделяют на три группы а) синтез катализаторов методом совместного осаждения жидкого стекла и соли алюминия (или других металлов) из соответствующих растворов б) пропитка свежеосажденного и промытого гидрогеля кремнекислоты солями алюминия или солями других металлов с последующим разложением солей нагреванием в) раздельное осаждение с последующим смешением отмытых свежих гидроокисей кремния и алюминия или других металлов. Среди этих методов наиболее распространенным и нашедшим широкое промышленное применение является метод совместного осаждения нз соответствующих водных растворов жидкого стекла и кислого сернокислого магния с последующей активацией магнийсиликатного гидрогеля раствором сернокислого алюминия. При активации в свежесформованном магнийсиликатном гидрогеле часть катионов замещается катионами алюминия из активирующего раствора. [c.91]

    Процесс формования магпийсиликатных гидрогелей для получения микросферических и шариковых катализаторов осуществляют методом совместного осаждения пз растворов жидкого стекла и сернокислого магния при таком давлении в напорных бачках для жидкого стекла 1,9 — 2,0 ат, для сернокислого магния 0,9 —1,0 ат. [c.94]

    Первая стадия этого процесса — синтез фталонитрилов — осуществляется при атмосферном давлении в интервале температур 350—480 С при четырехсемикратном избытке аммиака и кислорода. В качестве катализаторов используют окислы металлов переменной валентности, преимущественно на основе пятиокиси ванадия. Применение смеси окислов позволяет повысить активность и несколько улучшить селективность катализаторов. Наиболее часто предлагают использовать смеси окислов ванадия, олова и титана, ванадия и хрома, ванадия и молибдена рекомендуются также смеси окислов ванадия, титана, молибдена и висмута. Катализаторы могут применяться в виде сплавов, совместно осажден ных окислов или наноситься на окись алюминия, карборунд, силикагель, алюмосиликат и др. [c.286]

    В лабораторных работах очень охотпо пользуются особенно активными катализаторами, получаемыми совместным осаждением окиси хрома и окиси алюминия [18]. [c.58]

    Органический сапропелевый материал осаждается гораздо медленнее песка, но глинистый материал, как уже было показано, способен длительное время находиться во взвешенном состоянии, и поэтому понятно, почему органический материал и глинистые частицы могут осаждаться совместно, если вообще имело место поступление глинистого вещества. Так как глины, даже в неактивированном состоянии, способны превращать одни молекулы в другие, даже в пределах углеводородных классов, вообще менее способных к превращениям, чем соединения гетерогенного характера, образование углеводородов и близких к ним веществ сложной полициклической структуры кажется с химической точки зрения вероятным. С другой стороны, песок и карбонатные породы лишены ярко выраженных каталитических свойств, а потому совместное осаждение органического вещества теоретически не обеспечивает благоприятной обстановки для нефтепроизводящих процессов. Карбонатные породы, содержащие органическое вещество, являются продуктом превращений скелетных частей организмов, и, следовательно, невозможно как-то разъединять процессы отложения органического вещества и карбонатов. Вероятно, наличие карбонатов доля по препятствовать образованию нефти. Таким образом, приходится опираться главным образом на глинистые породы, ( держащие органическое вещество, как на благоприятную среду для нефтеобразовательных процессов. [c.202]

    Для получения осажденных катализаторов чаще всего исходят из водных растворов нитратов или (реже) солей органических карбоновых кислот. Сульфаты или галогениды обычно не рекомендуется брать, так как ЗО - или С1-И0НЫ, адсорбированные гелем, снижают активность готовых катализаторов. Осаждение можно проводить водными растворами аммиака, щелочей или карбонатов [(ЫН зСОз, Ыа СО.), К2СО3] на холоду или при нагревании, в концентрированных или разбавленных растворах. Необходимо проводить пробы на полноту осаждения, но следует избегать избытка осадителя, чтобы не ввести в осадки лишнего количества посторонних ионов. Концентрацию, температуру и быстроту осаждения можно варьировать в самых широких пределах, устанавливаемых эмпирически например, активная 2п(0Н)2 получается осаждением из очень разбавленных растворов, тогда как активные Си-катализаторы готовят вливанием концентрированной щелочи в концентрированные растворы нитрата или ацетата меди при 60—80 . Для получения смешанных катализаторов лучше всего вести совместное осаждение, т. е. из раствора смеси нитратов в рассчитанных количествах. [c.51]

    Катализаторы пркготовляют либо обжигом солей, либо совместным осаждением из раствора с помощью соды или поташа на какой-либо пористый носитель—кизельгур, каолин и т. д. Осажденные катализаторы подвергают отмывке от щелочи с таким расчетом, чтобы небольшое количество ее (не больше 0,5%) осталось, так как она действует активирующе. Восстановление промытых и сформированных N1- и Со-катализаторов проводится обычно водородом с примесью аммиака, так как присутствие последнего ускоряет процесс и дает более активные и стабильные контакты. Так, например, нормальный N -катализатор, восстановленный в течение 4 час. при 450"" без аммиака, давал 138 мл м и через 619 час, дезактивировался на 22 о тот же катализатор, восстановленный в аналогичных условиях смесью водорода и аммиака, давал 150 мл м и через 619 час. дезактивировался лишь на 8,5%. [c.683]

    Совместное осаждение меди и цинка из кислых растворов простых солей практически невозможно из-за большой разности их потенциалов (более чем на 1 В). Применяют комплексные, главным образом цианистые, соли этих металлов, в которых потенциал меди значительно смещается в сторону отрицательных значений, приближаясь к потенциалу выделения цинка. Как видно из рис. ХП-23, суммарная поляризационная кривая выделения сплава до плотности тока 1,2 А/дм располагается в менее отрицательной области по сравнению с кривыми раздельного восстановления ионов меди и цинка, что указывает на облегчение процесса, обусловленное сплавообразованием. [c.439]

    В настоящей работе изучены Со-катализаторы, содержащие в качестве носителя высококремнеземный цеолит ЦВМ. Катализаторы готовили методами влажного смешения и совместного осаждения. В качестве осадителя использовали (МН4)2СОз, НН4НСОз и ЫагСОз. [c.10]

    Значение Ос, примененное для расчета данных табл. 4, было найдс1Ю в результате прямых измерений диффузии водорода в ка1 ализаторе, проведенных методом пористой перегородки ([1], стр. 189 метод б). Это значение использовано для сферических зерен алюмосиликатного катализатора крекинга в описанных ниже опытах. Катализатор был получен совместным осаждением гелей он содержал 10 вес.% АЬОз и имел удельную поверхность 350 ж /з. Эффективный коэффициент диффузии Нг в зернах этого катализатора при 27° С (Д,,) оказался равным 7-10 3 см 1сек. Значение эффективного коэффициента диффузии кумола Ос при температуре реакции было вычислено из коэффициента диффузии водорода по уравнению [c.324]

    На практике описанные выше методы очистки обеспечивают меньшее содержание примесей. Особенно, вредное влияние на катодное осаждение цинка оказывают германий, мышьяк и сурьма. Возможно, что эти примеси равномерно распределяются в цинке при совместном осаждении, и перенапряжение водорода на них мало. Кроме того, они образуют гидриды типа ОеН4. [c.273]

    Электроосаждение сплавов на катоде является одним из весьма эффективных методов улучшения качества металлических покрытий. Путем совместного осаждения двух, трех и более металлов на катоде в виде их сплавов можно получать покрытия с высокими антикоррозионными и декоративными свойствами, с большей твердостььо и сопротивляемостью механическому износу, действию температуры и т. д. по сравнению с индивидуальными покрытиями теми же металлами. [c.431]


Смотреть страницы где упоминается термин Совместное осаждение: [c.14]    [c.78]    [c.76]    [c.123]    [c.39]    [c.100]    [c.83]    [c.683]    [c.432]    [c.434]    [c.437]   
Смотреть главы в:

Расчёты равновесий в аналитической химии -> Совместное осаждение


Теоретические основы аналитической химии 1987 (1987) -- [ c.128 ]




ПОИСК





Смотрите так же термины и статьи:

Баграмян, Совместное осаждение хрома с другими металлами

Взаимодействие гидроокисей при совместном осаждении

Висмут совместное осаждение

Гидроксильный ион, осаждение совместно

Гидроксильный ион, осаждение совместно с моногидратом оксалата кальция

Металлы осаждение совместное

Осаждение меди совместно с другими металлами

Осаждение никеля совместно с другими металлами

Природа поляризации при совместном катодном осаждении металлов

Синтез ферритов совместным осаждением, солей

Совместное осаждение железа, алюминия, титана, циркония, хрома, редкоземельны металлов, фосфора и ванадия вместе с марганцем и без него

Условия совместного осаждения металлов на катоде



© 2025 chem21.info Реклама на сайте