Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость восстановления

    Скорость данного процесса значительно выше скорости восстановления оксидов азота аммиаком, что позволяет в этом случае создать каталитический модуль меньших размеров. Поэтому в разработке фильтра для очистки дымовых газов котельных использовался нетрадиционный материал — высокопроницаемый катализатор, позволяющий получить высокую термостабильность, низкий коэффициент термического расширения, малое гидродинамическое сопротивление газовому потоку, высокие допустимые объемные скорости потока, однородность геометрической структуры, а также обеспечить простоту конструкций и удобство в изготовлении и эксплуатации фильтра. [c.152]


    Продукты коксования и их использование. Кокс представляет собой твердый матово-черный, пористый продукт. Из тонны сухой шихты получают 650—750 кг кокса. Он используется главным образом в металлургии, а также для газификации, производства карбида кальция, электродов, как реагент и топливо в ряде отраслей химической промышленности. Широкое применение кокса в металлургии определяет основные предъявляемые к нему требования. Кокс должен обладать достаточной механической прочностью, так как в противном случае ои будет разрушаться в металлургических печах под давлением столба шихты, что увеличит сопротивление движению газов, приведет к расстройству работы доменной печи, снижению ее производительности и т. п. Кокс должен иметь теплотворную способность 31 400—33 500 кДж/кг. Показателями качества кокса является горючесть и реакционная способность. Первый показатель характеризует скорость горения кокса, второй — скорость восстановления им диоксида углерода. Поскольку [c.38]

    Необходимо отметить, что процесс, обратный первой стадии (адсорбции углеводорода) приводит к изомеризации (миграции двойной связи), что и наблюдали на опыте, а скорость восстановления катализатора, измеренная в отсутствие кислорода, достаточна для объяснения скорости окислительной дегидрогенизации [81]. Но эти модели не дают ключа к решению вопроса о происхождении различий в селективности у разных окислов, т. е. эти модели не раскрывают причин, заставляющих окислы отдавать предпочтение одному из возможных реакционных путей (через альдегид или диен). Начальный выход первичных продуктов окисления никогда не равен 100%, и всегда присутствует какое-то количество продуктов деструкции. Этот новый тип селективности связан с легкостью десорбции первичных продуктов, которые очень часто адсорбируются сильнее, чем олефин, как показывает их влияние на кинетику реакции. В экстремальных случаях не десорбируется ни одно из промежуточных соединений между олефином и СО или СОг, и единственной реакцией, которую удается наблюдать, является полное сгорание, и притом не только на неселективных катализаторах, но и на селективных, таких, как В1— —Мо—О (например, циклопентен) [83]. По той же причине при работе со всеми этими катализаторами следует избегать микропористости, поскольку из-за медленной диффузии в порах удлиняется время контакта, что приводит к глубокому разрушению желательных продуктов. [c.165]


Рис. 16.1. Общий вид поляризационных кривых, демонстрирующих влияние концентрации пассиватора на коррозию железа. Окислитель с меньшей скоростью восстановления (пунктир) не приводит к пассирации Рис. 16.1. Общий вид <a href="/info/10700">поляризационных кривых</a>, демонстрирующих <a href="/info/6816">влияние концентрации</a> пассиватора на <a href="/info/16254">коррозию железа</a>. Окислитель с меньшей <a href="/info/285236">скоростью восстановления</a> (пунктир) не приводит к пассирации
    Если предположить,, что скорость окисления пропорциональна концентрации R вблизи электрода, то в состоянии равновесия скорость восстановления будет иметь первый порядок по концентрации. Тогда выражение чля скоростей обмена можно записать в виде [c.555]

    При наличии в системе ГХЦ катализатор оставался активным длительное время. Активирующий эффект ГХЦ проявляется как при введении его в начале процесса, так и при добавлении к практически неактивному катализатору, который после введения ГХЦ вновь становится активным. Между алюминийорганическим соединением и активатором необходимо сохранять такое соотношение, чтобы скорость восстановления до преобладала над скоростью окисления в Реактивированный катализатор полностью теряет свою активность, если весь ванадий переходит в трехвалентное состояние, но после введения новой порции алюминийорганического соединения вновь становится активным в процессе сополимеризации. В присутствии активаторов образуются сополимеры с меньшей молекулярной массой, что, вероятно, связано с увеличением концентрации активных центров. [c.301]

    Начала количественной теории сильных электролитов, разработанные Дебаем и Хюккелем (1923), имели целью отразить влияние этого электростатического взаимодействия между ионами на различные свойства раствора. Эта теория, учитывающая взаимодействие иона с окружающей его ионной атмосферой, дала возможность установить количественную связь между радиусом этой атмосферы и концентрацией электролита, определить скорость восстановления ионной атмосферы при перемещении иона (время релаксации— см. 168) и решить ряд других вопросов, важных для понимания процессов прохождения тока через раствор. Однако теория построена на ряде упрощающих допущений и до настоящего времени применима лишь к растворам с очень низкой концентрацией. [c.393]

    В печах с вращающимся барабаном, шахтных и ретортных печах движение твердых мелкокусковых материалов в слое в результате перегребания или пересыпания является очень важным процессом и для теплопередачи. В доменном процессе производительность печей в решающей степени зависит от скорости восстановления оксидов железа газами. В определенных условиях скорость самой химической реакции между оксидами железа и восстанавливающим газом достаточно велика и, во всяком случае, больше скорости, с которой газ проникает через толщу кусков руды и зону реакции. В та- [c.22]

    Для сульфита характерен самый большой участок очень быстрого поглощения сероводорода - ОВ. При этом на 1 моль сульфита поглощается 0,41 моля Н , после чего на участке ВС скорость поглощения существенно снижается, что соответствует реакции восстановления образовавшегося тиосульфата. Данные по скорости восстановления хорошо коррелируют с термодинамическими параметрами реакций. [c.199]

    Важным способом повышения скорости восстановления и разложения тиосульфата является применение катализаторов. Установлено [80], что катализаторы окис-лительно-восстановительного типа, активные в реакции окисления Н,5 [c.199]

    Соотношение между комплексами одно- и трехвалентного родия в стационарном состоянии зависит от относительных скоростей стадий окисления и восстановления. В стационарных условиях при возрастании скорости окисления родия (I) относительно скорости восстановления родия(III) должно снижаться соотношение между родием (I) и родием (111). [c.300]

    Площадь поверхности восстановленного катализатора обратно пропорциональна скорости восстановления. Например, такой промотор, как АЬОз, уменьшает скорость восстановления, но увеличивает поверхность. В присутствии паров воды скорость восстановления резко снижается. Поскольку вода всегда образуется при восстановлении катализатора водородом, целесообразны большие линейные скорости газа, при которых увеличивается молярное отношение Н2/Н2О, что повышает скорость восстановления [6]. [c.175]

    Если эндотермическая реакция осуществляется с помощью одного водорода, то требуется подвод тепла извне. Но если восстановление проводится синтез-газом, то при этом образуется аммиак как только будет восстановлена часть катализатора, и это уменьшает необходимость в подводе тепла. Реакция синтеза аммиака является экзотермической реакцией, выделяющееся тепло увеличивает температуру катализатора и ускоряет скорость восстановления. Как только на самописце обнаруживаются признаки возрастания температур в катализаторе, можно увеличить скорость газа в слое, чтобы передать тепло в нижние слои и способствовать восстановлению оставшейся части катализатора. Чем больше образуется аммиака, тем больше происходит саморазогревание слоя, при этом количество подводящегося тепла можно уменьшать, пока в конечном итоге не будет достигнута максимальная производительность по газу, проходящему через катализатор, и потребуется холодный байпас, чтобы регулировать температуру на входе и предотвратить чрезмерное увеличение температуры в горячей зоне. [c.207]


    На некоторых пассивных участках происходят адсорбция и восстановление пассиватора, процесс пассивации постепенно распространяется на всю поверхность металла, причем скорость восстановления пассиватора становится равной скорости растворения металла в пассивном состоянии /пас- [c.76]

    Малые добавки- в низколегированных сталях не оказывают заметного влияния на скорость общей коррозии в воде и почве, однако состав стали играет большую роль в работе гальванических пар, определяющих коррозионную стойкость при гальванических контактах. Например, в большинстве природных сред стали с малым содержанием никеля и хрома являются катодами по отношению к углеродистой стали вследствие повышения анодной поляризации. Причина этого объяснена на рис. 6.15. И углеродистая, и низколегированная сталь, взятые в отдельности, корродируют с приблизительно одинаковой скоростью / ор, ограниченной скоростью восстановления кислорода. При контакте изначально различные потенциалы обеих сталей приобретают одно и то же значение гальв- [c.127]

    Скорость восстановления нара-замещенных ароматических соединений снижается по ряду  [c.409]

    Существует немного областей исследовательской работы, дл которых точность определений играет столь ваЖ Ную роль, как в области исследования упругости. Диллон (см. ссылку 217) составил обзор различных определений упругости, встречающихся в литературе, причем он установил наличие крупных расхождений во мнениях. Задача найти выход из затруднительного положения выпала на долю Гоффмана. По его мнению, упругость является более широким понятием, чем это предполагалось прежде. Предшествующие исследователи рассуждали об упругости и количественно определяли ее, исходя только из одной ее стороны, и, таким образом, ошибочно принимали часть за целое, Диллон, например, определил упругость как соотношение между энергией сокращения и энергией деформации. Согласно Гоффману, этим соотношением определяется степень упругого восстановления, которое в действительности представляет собой лишь один из факторов упругости, а именно — фактор интенсивности. По его мнению, упругость определяется фактором интенсивности (упругое восстановление), фактором мощности (жесткость или модуль упругости) и фактором скорости (скорость восстановления после деформации или напряжения). Аналогичная картина наблюдается в электрической цепи. Здесь мы имеем общее количество электричества, протекающего через цепь, которое измеряется кулонами (фактор мощности), на- [c.227]

    Колнчестиенное определение основано на измерении высоты полярографической полны, т. е. значении предельного тока. По мере увеличения напр 5жеиия скорость восстановления ионов определяемого металла на катоде непрерывно возраст,чет и непосредственно прилегающий к катоду слон раствора все более и более обедняется этими ионами. В конце концов система достигнет такого состояния, ири котором количество иоиов, разряжающихся в единицу времени на катоде, равно количеству ионов, которые подходят к катоду в результате диффузии нз более отдаленных частей раствора. Начиная с этого момента дальнейшее увеличение силы тока с [c.453]

    При малых нагрузках (обычно при напряжениях сдвига до 50—500 Па) смазки деформируются, подчиняясь закону Гука. Повышение напряжения сдвига (т) приводит к пропорциональному увеличению обратимой линейной деформации (7) испытуемого образца смазки. Дальнейшее увеличение напряжения сдвига (увеличение деформации) приводит к отклонению от линейной зависимости т = /(-у). Одновременно деформация становится не вполне обратимой. При еше большем увеличении напряжения сдвига наиболее слабые связи между частицами загустителя начинают разрушаться. Однако нри этом происходит обратный процесс — установление и упрочнение новых связей между частицами загустителя, приходящими в соприкосновение друг с другом (напрпмер, под действием теплового движения). При малых нагрузках процессы разрушения и восстановления связей компенсируют друг друга. По мере возрастания напряжений сдвига скорость разрушения контактов в структурном каркасе увеличивается и при определенной нагрузке начинает заметно преобладать над скоростью восстановления связей. Важно также то, что при разрушении заметного числа связей нагрузка на оставшиеся связи даже при неизменном напряжении сдвига возрастает. В результате процесс снижения прочности структурного каркаса смазки приобретает са-моускоряющийся, лавинный характер — это соответствует достижению и переходу через предел прочности. Смазка начинает течь подобно вязкой, точнее аномально вязкой жидкости. [c.271]

    Таким образом, восстановление натрием в ашдком аммиаке позволяет получать очень чистые тиранс-олефины, получение же чистых цис-изомеров методом каталитического гидрирования является очень трудной задачей, поскольку скорости восстановления ацетилена в олефин и олефина в парафин весьма мало отличаются друг от друга. Хейнс с сотрудниками [51] предложили в связи с этим применять катализатор, обладающий меньшей активностью, чем никель Ренея, т. е. никель на кизельгуре. [c.421]

    А1, который становится неактивным при восстановлении до [5, 8], Скорость восстановления ванадия и степень дезакти-вации катализатора зависят от природы каталитической системы, соотношения между алюминийорганическим соединением и соединением ванадия, концентрации соединения ванадия, температуры, а также среды, в которой образуется каталитический комплекс и проводится процесс сополимеризации. Особо резкое падение активности наблюдается в первые минуты после приготовления каталитического комплекса (катализатор стареет). Так, катализатор, приготовленный из триацетилацетоната ванадия У(С5Н702)з и диэтилалюминийхлорида при 25°С, уже через несколько минут после приготовления обладает низкой активностью [6]. О степени дезактивации ряда других катализаторов при хранении можно судить по данным, приведенным на рис. 1 [9]. [c.295]

    На примере каталитического восста-повленпя водородом д-нитрофенола и других нптросоединений можно проследить влияние растворителя на феноменологическую кинетику реакции, описываемую достаточно сложными ленгмюровскпми уравнениями. Было показано [17], что в общем виде скорость восстановления на ни- .елевом катализаторе выражается уравнением  [c.54]

    Наряду с термодинамическими характеристиками, мерой прочности связи кислорода с решеткой могут служить и такие кинетические характеристики, как начальная скорость восстановления окислов водородом или скорость гомомолекулярного или гетерогенного изотопного обмена кислорода на окислах. Первый метод был применен Захтлером и Дебуром [43 ], а второй широко развит Боресковым и его школой [42, 44, 45]. Слабой стороной использования кинетических параметров является, то, что по ним имеется мало данных, они не поддаются приближенным расчетам и для своего определения требуют эксперимента, вполне сравнимого по сложности с прямым определением активности и селективности катализатора. [c.163]

    Хотя формула (13.9) получена для тА< тв- она дает правильный порядок величины и при тц. В этом случае Тп т очевидно, будет величиной порядка времени между последовательными столкновениями. Вывод о большой скорости восстановления максвеловского распределения (в случае сравнимых масс сталкивающихся молекул) полностью подтверждается ва опыте. [c.81]

    Начальная скорость восстановления очень высока, но она быстро снижается. Медленную вторую стадию восстановления связывают с наличием большого количества оксида железа, химически связанного с оксидом кремния [6]. Площадь поверхности восстановленного катализатора меньше, чем невосстановленного, как показывает табл. 1. В ходе синтеза Фишера — Тропша процесс восстановления катализатора продолжается. Одновременно из металлического железа образуется карбид Хэгга (РвбСг). Площадь поверхности катализатора продолжает уменьшаться, и растет доля пор с большим диаметром [6]. [c.173]

    Различная степень нестатичности элементарных явлений связана с различной способностью (скорость) восстанавливать нарушенное равновесие. Поэтому при оценке степени нестатичности элементарного явления используется скорость восстановления равновесия. Тогда квазистатические процессы следует определить как наиболее быстрые процессы, а нестатические — как медленные. Степень нестатичности при этом будет тем больше, чем меньше скорость восстановления равновесия. Так как квазистатические процессы эквариантны, то решающими стадиями сложного процесса будут нестатические стадии. Задача приближенного моделирования и заключается в выявлении наиболее медленных стадий, контролирующих процесс с последующим моделированием их в эксперименте согласно теории подобия. [c.176]

    По данным [1821, температура восстановления катализатора Pt/-y-AI.,0,T зависит от температуры его прокаливания. Так, максимальная скорость восстановления (пик на термограмме ТПВ) наблюдается при 150 С, если катализатор прокален при 300 X или при более низких температурах. Однако температура восстановления повышается до 275 "С в случае, когда прокаливание проводят при. 500 550 "С. Аналогичный эффект температуры прокаливания наблюдается н для катализатора Re/y-Al Oa. С повышением температуры прокаливания от 300 до 500—550 °С температура максимальной скорости восстановления возрастает от 350 до 550 °С. Подобный результат можно объяснить тем, что высокие температуры прокаливания Способствуют более полному взаимодействию металлических оксидов с носителем —Al Og. Исходя нз количества водорода, поглощенного при восста ювленни, степень окисления платины и рения прокаленных катализаторах соответственно равна 4 +. 1 7+ (табл. 2.6). Платина н рений восстанавливаются до металли- ческого состояния. [c.82]

    Прокаленные катализаторы риформинга сорбируют влагу при хранении. Температура сушки, а следовательно, содержание воды в биметаллическом катализаторе Pt—Re/Al.jOg оказывает значительное влияние на процесс его восстановления [1821. Так, при ТПВ промышленного катализатора Pt —Re/AUO , высушенного при 100 X, максимальная скорость восстановления отвечает 311 °С (один пик на термограмме), в то время как для высушенного при 500 С она наблюдается при двух температурах (два пика) —319 и 584 °С. Полагают, что вода гидратирует R aO, и тем самы.м увеличивает мобильность этого окснда. В зависимости от температуры сушки меняется степень гидратации и подвижность Re O . Таким образом, вода влияет на скорость мигрирования РеЮ, к платиновым центрам, [c.82]

    Для подтверждения следует прежде всего сослаться на результаты, полученные при температурно-программнровап ном восстановлении водородом промышленного катализатора Р1—Ре/А1. ,0 ,, прокаленного при 500 °С и высушенного перед загрузкой в реактор при 100—200 °С [1821. Платина н рений восстанавливаются в одном и том же интервале температур, характерном для платины, хотя температуры максимальных скоростей восстановления (пики на термограммах ТПВ) Р1/А120з и Ке/А120,, различаются почти иа 300 С. То обстоятельство, что платина катализирует восстановление рения [228], указывает иа наличие тесного контакта межлу этими металлами, а следовательно, и на возможность образования сплава. [c.101]

    В работе [2 ] проведена проверка стадийного механизма процесса окисления нафталина на пятиокиси ванадия.путем прямого сопоставления скоростей катализа и предпрлагаемых стадий восстановления и реокисления катализатора. Обнаруженное в этой работе превышение скорости катализа над скоростью восстановления объяснено бпреде-ленныгл вкладом ассоциативного механизма. Предположение о возможности протекания окисления на( я алина по ассоциативному механизму высказано также в работе Наши экспериментальные данные обос- [c.100]

    Отравляюш,ее действие воды сводится к минимуму, если концентрация ее паров поддерживается на низком уровне, который достигается использованием высокой объемной скорости, а также восстановлением при возможно более низких температуре и давлении. Синтез аммиака начинается сразу же, как только в конверторе восстановится некоторое количество железа, и экзотермическая теплота синтеза повышает температуру катализатора, что в свою очередь увеличивает скорость восстановления. Поэтому скорость восстановления должна контролироваться сохранением низкого давления и обычными методами регулирования температуры (добавление холодного газа и т. д.),, которые уменьшают выход аммиака. Скорость восстановления оценивается по концентрации-воды в выходящем газе, которая обычно не должна превышать 10 ООО объемн. ч1млн. [c.165]

    Содержащиеся в барите примеси (Si02, АЬОз, СаРг, РеаОз и др.) в условиях получения плава могут вступать в реакции, затрудняющие процесс восстановления и снижающие выход Ва в плаве. Поэтому их содержание в барите ограничивают. Существенное значение на степень перехода бария в плав оказывает температура (выше 800 °С) и время. По-видимому, на увеличение скорости восстановления барита влияет реакционная способность коксов, которая при температурах выше 700—800 °С существенно возрастает. [c.110]

    После наступления пассивности восстановление пассиватора в отсутствие растворенного кислорода продолжается с низкой скоростью, эквивалентной /пае (<0,3 мкА/см — значение рассчитано из данных по скорости коррозии железа в хроматных растворах). При этом постепенно накапливаются оксиды железа и продукты восстановления хроматов. Возрастанию скорости восстановления способствуют факторы, увеличивающие /пао напр"Ьмер рост активности ионов Н+, повышение температуры, присутствие ионов I . Экспериментально установлено потребление хромата падает со временем, отчасти потому, что образующийся со временем вторичный оксидный слой уменьшает площадь поверхности, на которой должно происходить возобновление пассивирующей пленки. [c.262]

    Чтобы объяснить реологическое поведение таких систем, обратимся к кинетическим представлениям о структуре, которую можно рассматривать как структурную сетку из подвижных частиц, на-ходяихихся под действием броуновского движения. Для выхода частицы из структурного каркаса ей необходимо преодолеть энергетический барьер. С увеличением наиряжения сдвига вероятность разрушения структуры возрастает. Другим важным параметром структуры является время релаксации, которое характеризует скорость восстановления структуры. При малых временах релаксации структуры успевают восстанавливаться в процессе течения даже при больших напряжениях сдвига. [c.376]

    Трещины серебра напоминают пеиу с открытыми ячейками, диаметр полостей и участков полимера которой в среднем равен 20 нм. При дальнейшем растяжении продолжается процесс образования трещин серебра. Уменьшение модуля упругости и предела вынужденной эластичности с увеличением деформации объясняется уменьшением плотности, вызванного этой деформацией, и последующего увеличения коэффициента концентрации напряжения на микроскопических элементах полимера, содержащего трещины серебра. Высокие скорости восстановления материала с трещинами серебра после ползучести определяются в основном его поверхностным натяжением и большой внутренней удельной площадью поверхности таких трещин [c.365]


Смотреть страницы где упоминается термин Скорость восстановления: [c.434]    [c.434]    [c.555]    [c.138]    [c.370]    [c.106]    [c.302]    [c.303]    [c.86]    [c.113]    [c.166]    [c.416]    [c.230]    [c.56]    [c.180]   
Электрохимия органических соединений (1968) -- [ c.6 , c.43 , c.44 ]

Физико-химические основы технологии выпускных форм красителей (1974) -- [ c.103 , c.129 ]




ПОИСК







© 2025 chem21.info Реклама на сайте