Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биохимия бактерий

    И наконец, бактерии можно использовать и для повышения эффективности обычных нефтепромыслов. Мы уже знаем, что при нынешних методах добычи значительная часть нефти так и остается в земных недрах. А вот если запустить в отработавшую свое скважину работников-невидимок, то они очень быстро переведут оставшуюся нефть в биогаз, и старые месторождения обретут новую жизнь. В Институте микробиологии АН СССР и в Институте биохимии и физиологии микроорганизмов уже прошли проверку технологии газификации остаточной нефти с помощью метанообразующих бактерий. Полученный таким образом бактериальный метан практически не отличается от природного. [c.138]


    В Институте биохимии им. А. Баха АН СССР разработан метод получения ценного витаминного концентрата из ацетонобутиловой барды, путем дополнительного сбраживания ее метанообразующими бактериями, которые, используя часть сухих веществ, синтезируют витамин В12. В этих кормовых препаратах кроме рибофлавина содержится цианкобаламин. [c.143]

    Книга английского автора — первая биохимическая монография, охватывающая все краски живой природы, В доступной, но строго научной форме она знакомит с химией и биохимией пигментов, их распространением в природе (от бактерий до млекопитающих), многообразием функций. [c.4]

    Орлова О. К. Полисахарид клеточных стенок дифтерийных бактерий // Тез. докл. IV Всесоюз. конф. по химии и биохимии углеводов. — Львов, [c.446]

    Биохимия изучает химию живой природы в широком диапазоне от человека и позвоночных до бактерий и вирусов. В зависимости от объекта исследования можно условно выделить биохимий животных и человека, биохимию растений и биохимию микроорганизмов. Однако, несмотря на определенные, порой принципиальные различия в химическом составе и обмене веществ тех или иных видов живых организмов, существует биохимическое единство всех форм жизни, которое авторы стремились отразить в настоящем учебнике. [c.4]

    Основные научные работы относятся к биохимии растений и технической биохимии. Установил первостепенную роль глутамина при ассимиляции аммиака, роль аммиака как регулятора синтеза и активности ферментов растений. Изучал фиксацию молекулярного азота азотобактером и клубеньковыми бактериями. Выяснил факторы, определяющие интенсивность дыхания зерна, а также биохимические особенности дефектного зёрна. Предложил методы улучщения качества хлеба с помощью ферментных препаратов из плесневых грибов. [c.265]

    Из биохимии белков. 1. Ассимиляция и синтез белков. Белки содержатся в каждой живой клетке. Для их синтеза, соответственно для синтеза составляющих их аминокислот, растения используют неорганические соединения азота — аммиак и нитраты, которые они извлекают из почвы. Некоторые низшие существа — почвенные бактерии — могут потреблять даже молекулярный азот. [c.442]

    Нуклеиновые кислоты являются, по-видимому, всеобщим и, вероятно, единственным генетическим материалом. Имеющиеся данные показывают, что гены выполняют свое назначение, регулируя специфичность синтеза белка. Взаимосвязь между нуклеиновыми кислотами и белками при передаче генетической информации изучает быстро развивающийся раздел биологии, занимающий своего рода промежуточное положение между биохимией и генетикой. Относительная простота строения вирусов и бактерий обусловила преимущественный выбор именно таких организмов для большинства работ в этой области. Количество данных, полученных на высших растениях, напротив, ограниченно. [c.461]


    В настоящем 6-м издании по-новому построено только несколько глав, так как для 5-го издания многие главы были написаны заново или расширены. Во всех главах учтены успехи сравнительной биохимии, физиологии и экологии микроорганизмов. Большинство изменений касается анаэробных бактерий, в частности архебактерий. Становится все более очевидным, что взаимодействие организмов в биосфере нельзя понять без детального знания физиологии бактерий бактерии одни могли бы поддерживать круговорот веществ на нашей планете, тогда как эукариоты на это не способны. [c.7]

    Прогресс в какой-нибудь одной области часто зависит от развития соседних областей знания. В науке очень редко можно решить центральную проблему, строго следуя намеченному плану, каким бы обоснованным и детальным он ни был. Подчеркивая некоторые особенности в исследовании биологического окисления жирных кислот, мы пытались показать, как формировались наши представления о механизме этого процесса здесь были использованы всевозможные экспериментальные подходы от цитологического исследования клето млекопитающих до изучения биохимии анаэробных бактерий или от изучения совсем другой, но тем не менее родственной метаболической системы (цикла трикарбоновых кислот) до выяснения химических свойств кофакторов ферментативных реакций. [c.20]

    Поскольку выделение мутантов у микроорганизмов — задача относительно несложная, микроорганизмы являются очень удобным объектом при исследовании метаболических процессов и изучении физиологической роли определенных биохимических реакций, тем более что протекающие в живых организмах метаболические процессы в основном универсальны. Например, бактерии, птицы, рептилии и млекопитающие нуждаются в синтезе одинаковых низкомолекулярных соединений. Далее, различные виды организмов используют одинаковый клеточный аппарат для включения этих соединений в определенные макромолекулы. Так, оказывается, что последовательность аминокислот в некоторых белках достаточно близка у таких далеких организмов, как микробы и млекопитающие. Информацию, необходимую для решения некоторых общих проблем биохимии, можно получить при работе с любыми живыми организмами, однако бактерии обладают тем преимуществом, что при работе с ними можно использовать такие методы, которые неприемлемы при работе с другими организмами. Как отметил Дж. Уотсон [43]  [c.29]

    Микробиологическая практика располагает значительным количеством эмпирически подобранных простых тестов для идентификации микробных культур. По мере развития биохимии бактерий знания о физиологическом значении этих признаков все больше и больше расширяются. Поиски новых тестов продолжаются. Однако сопоставление бактерий по большому числу разнообразных призна- [c.126]

    Биологическая роль нуклеиновых кислот начала выясняться в конце 40-х — начале 50-х годов, когда впервые было выяснено, что ДНК, взятая у одной разновидности бактерий и введенная в другую разновидность, заставляет последнюю производить потомство с признаками, имеющимися у первой разновидности. Отсюда вытекало, что вместе с ДНК была перенесена наследственная информация — каким-то образом закодированный приказ строить белковые молекулы определенного типа. Эти работы стали исходной точкой быстрого прогресса в области молекулярной генетики , приближающего нас к познанию процесса синтеза белка в клетках, размножения клеток путем деления и в конечном итоге воспроизведения всего сложного животного или растительного организма в том виде, который характерен для родителей этого организма. Подробное обсуждение этих проблем увело бы нас далеко в область биохимии, в общих же чертах роль ДНК и РНК выглядит следующим образом. Молекулы ДНК находятся в клеточных ядрах, они содержат наследственную информацию в виде различной последовательности нуклеотидов. ДНК играет роль матрицы , с которой отпечатываются копии молекул РНК, непосредственно участвующих в синтезе белков. Таким образом, молекулы РНК служат передатчиками от ДНК к местам клетки, где непосредственно осуществляется синтез белка. Роль РНК в процессе синтеза белка была подтверждена опытами, выполненными в начале 60-х годов М. Ниренбергом и Д. Матеи. [c.351]

    Условия культивирования термофильных метановых бактерий на мелассной барде с целью получения витамина В12 изучены Институтом биохимии им. А. Н. Баха АН СССР, а технология кормового концентрата витамина создана УкрНИИСПом совместно с работниками предприятий, на которых были построены первые цехи. В настоящее время этот продукт вырабатывают Андрушевский и Калкунский спиртовые заводы. [c.389]

    СТРУКТУРА ВЫСШЕГО ПОРЯДКА. Ни одно из крупных научных открытий последних лет не было овеяно такой славой, как начало расшифровки структуры ДНК. Идентификация гена классической генетики постепенно приводит к тому, что генетика из чисто биологической науки становится достоянием химии, биохимии, биофизики и других естественных наук. В популярном виде история ДНК изложена в интересной книге лауреата Нобелевской премии Джеймса Уотсона . Полная структура хотя бы одной молекулы ДНК все еш е не выяснена, может быть, потому, что ее размеры столь велики, а ведь длина молекулы ДНК, например кишечной палочки Es heri hia oli (бактерии, обитаюш ей в толстой кишке человека), в развернутом виде достигает 1 мм. [c.481]


    Активность неспецифичных Н. подавляется этилендиаминтетрауксусной к-той. Для нек-рых Н. обнаружены ингибиторы белковой природы. Локализация в клетках и функцион. роль Н. не изучены. Н. применяют в препаративной биохимии и генной инженерии Н. из бактерий Sarratia mar es ens используют для лечения вирусных заболеваний пчел. [c.296]

    Первое применение изотопных меток при изучении цикла трикарбоновых кислот — вообще одно из первых в истории биохимии — было осуществлено Вудом и Веркманом в Университете щтата Айова (США) . Их целью было исследование сбраживания глицерина пропионовокислыми бактериями— процесса, не имевшего видимой связи с циклом трикарбоновых кислот  [c.322]

    Развитие биологической химии привело к созданию новых отраслей науки, методологически и методически тесно связанных с биохимией. Так, быстрыми темпами развивается молекулярная биология, генная и клеточная инженерия. В настоящее время достижимыми представляются задачи по синтезу генетического материала и встраиванию его в наследственный аппарат клетки. С помощью микробов возможен синтез белков и регуляторов, характерных для человека, таких, как инсулин или интерферон. Фундаментальная информация о химической природе компонентов биологической системы обеспечивает направленное биомедицинское влияние на несколько уровней системы 1) принципиально важным явилось создание веществ, пагубно действующих на патогенные микробы, способные развиваться в организме человека. Получение антибиотиков, выяснение механизмов их действия, разработка методов их синтеза и модификации позволило побороть многие болезни, в том числе и инфекционного характера. Наиболее ярким примером может служить создание целой серии антибиотиков пенициллинового ряда. Пенициллин и его аналоги, встраиваясь в стенку бактерий, предотвращают их рост и иочти не влияют на клетки организма человека. Многие антибиотики ингибирующе действуют на процесс биосинтеза белка в бактери- [c.198]

    Молекулярная биология исследует молекулярную природу основных явлений жизни, прежде всего наследственности и изменчивости. Эти явления определяются строением и свойствами нуклеиновых кислот — информационных макромолекул. Становление молекулярной биологии связано с открытием генетической роли нуклеиновых кислот и с ее расшифровкой. Гены, т. е. фрагменты молекул ДНК и РНК, программируют синтез белков. Эти молекулы являются законодательными , а белки — исполнительными . Молекулярная биология началась с открытия трансформации бактерий посредством ДНК (Эвери, Мак-Леод, Мак-Карти, 1944). Молекулярная биология ищет объяснение биологических явлений в химии и молекулярной физике. Она изучает широкую совокупность жизненных процессов, в том числе ферментативный катализ, мембранный транспорт, механохимические явления и т. д. В отличие от классической биохимии, молекулярная биология объединяется с физикой и ее специфика состоит именно в физических аспектах исследований и задач. [c.220]

    Бактерия Es heri hia соИ - один из наиболее хорошо изученных организмов. За последние пятьдесят лет удалось получить исчерпывающую информацию о ее генетике, молекулярной биологии, биохимии, физиологии и общей биологии. Это грамотрицательная непатогенная подвижная палочка длиной менее 1 мкм. Ее средой обитания является кишечник человека, но она также может высеваться из почвы и воды. Благодаря способности размножаться простым делением на средах, содержащих только ионы Na , К" , Mg +, Са " , NH , С1 , НРО и SO , микроэлементы и источник углерода (например, глюкозу), Е. соИ ста- [c.24]

    МН, чения живые организмы имеют ферментные системы, способные превращать гликозид 6.132 в никотинамидяинуклеотид 6.133, обозначаемый в биохимии аббревиатурой НАД. Он играет ключевую роль в процессе превращения энергии химических связей пищи в биологически доступную энергию. Изучение деталей этого процесса входит в компетенцию биохимии. Здесь уместно только подчеркнуть, что ни один организм от бактерии до человека не может обходиться без НАД. Поэтому амид никотиновой кислоты относят к витаминам (витамин РР). [c.458]

    Микробиотехнология, или микробная биотехнология базируется на интегрированном использовании микробиологии, биохимии и инженерных наук. с целью реализации потенциальных способностей микроорганизмов в технике и промышленном производстве. По сути своей микробиотехнология тождественна промышленной (технической) микробиологии. Ее объектами являются микробы-вирусы (включая вироиды и фаги), бактерии, грибы, лишайники, протозоа (см. главу 2). В ряде случаев биообъектами являются первичные метаболиты микробного происхождения — ферменты, каталитическая активность которых лежит в основе инженерной энзимологии. [c.374]

    Анаэробная ферментация органического материала применяется при обработке бытовых и промышленных стоков, а также отходов животноводческих и птицеферм [381, 404]. Хотя анаэробное сбраживание органического материала в метантенках используется уже давно, бактериология и биохимия этого процесса изучены недостаточно. Одной из причин этого, по-видимому, являются трудности, с которыми встречаются исследователи при культивировании анаэробных бактерий [381]. Успехи в изучении микрофлоры, участвующей в анаэробном разложении отходов, были достигнуты после получения новых сведений о микроорганизмах рубца жвачных животных. Процессы, протекающие в рубце, имеют много общего с реакциями превращения органических веществ в метантенках. Вот почему исследования, которые ведутся в этих двух направлениях, взаимосвязаны [380]. [c.134]

    Вторая стадия анаэробной ферментации органических отходов осуществляется метанообразующими бактериями. Эти организмы довольно широко распространены в природе и обнаруживаются в почве, органических осадках озер и прудов, рубце травоядных животных, сточных водах и содержимом метантенков. Биохимии метаногенной фазы уделялось много внимания, однако сравнительно мало сведений о бактериях, ее осуществляющих. Изучение метанообразующих бактерий затруднено из-за высокой чувствительности их к кислороду, а также очень незначительной скорости роста. Морфологически метаногенные бактерии очень разнообразны. Баркер [293] разделил их [c.138]

    Основные научные работы посвящены биохимии нуклеиновых кислот, ферментативным превращениям углеводов и жиров, механизму фотосинтеза. Используя фермент полинуклеотидфосфорилазу, выделенную из бактерий, синтезировал (1955) РНК (в отличие от природной она не обладала стереоспецифичностью и в ее молекулу входили не четыре типа нуклеотидов, а лишь один). Участвовал в работах по расшифровке генетического кода. [c.378]

    Впервые соли тетразолия были применены в микробиологии в 1941 г. как индикатор окраски бактерий (Kuhn, Ger hel). Продукты восстановления солей тетразолия (формазаны) ярко окрашены, не окисляются на воздухе и поэтому широко применяются в биохимии для [c.146]

    В распоряжении изучающих микробиологию имеется ряд превосходных учебников, таких как Общая микробиология Стейниера с соавторами, Жизнь бактерий Тимана и Микробиология Дэвиса с соавторами (см. список литературы). Однако среди многочисленных руководств не было такого, где бы в сжатой форме были изложены основные сведения по общей микробиологии, необходимые не только микробиологам, но и лицам, изучаюпщм ботанику, зоологию, фармаколо-гйю, сельское хозяйство, медицину, химию и физику. Настоящая книга рассчитана именно на этот широкий круг читателей. Мы поставили себе целью дать общий обзор по микробиологии наряду с некоторыми специальными сведениями в надежде пробудить интерес к дальнейшему изучению предмета. При этом мы исходили из того, что читатель уже обладает определенными знаниями в области биологии, например усвоил то, что сообщается в кратких руководствах по ботанике и зоологии, вышедших в той же серии изданий. Кроме того, мы стремились побудить читателя к обстоятельному изучению смежных дисциплин, в первую очередь общей биохимии. Важнейшие метаболические реакции представлены нами лишь в самом общем виде достаточно подробно описаны только те метаболические процессы, которые типичны для микроорганизмов. [c.8]

    Физиология. Метанобразующие бактерии-строгие анаэробы кислород воздуха убивает их. У них нет ни каталазы, ни супероксиддисму-тазы. Именно из-за высокой чувствительности этих бактерий к кислороду наши сведения об их физиологии, биохимии и экологии пока сравнительно скудны. Только после разработки специальных методов (например, метода Хангейта) появилась возможность пересевать и выделять метанобразующие бактерии без доступа кислорода. [c.317]


Библиография для Биохимия бактерий: [c.244]    [c.318]    [c.27]    [c.440]    [c.243]   
Смотреть страницы где упоминается термин Биохимия бактерий: [c.198]    [c.207]    [c.353]    [c.192]    [c.282]    [c.400]    [c.5]    [c.355]    [c.621]    [c.35]    [c.353]    [c.397]    [c.469]    [c.319]    [c.320]    [c.45]   
Научно-исследовательские организации в области химии США, Англии, Италии, ФРГ, Франции и Японии (1971) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Биохимия



© 2024 chem21.info Реклама на сайте