Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление биологическое Окисление жирных кислот

    Биологическое окисление — источник энергии живых организмов. Окислительные превращения охватывают все виды питательных веществ белки, углеводы и жиры, которые распадаются под влиянием ферментов пищеварительного тракта на аминокислоты, моносахариды, глицерин и жирные кислоты. Продукты расщепления образуют метаболический фонд биосинтеза и получения энергии. [c.320]


    Обмен веществ у растений имеет много коренных отличий от обмена веществ в животном организме и в то же время немало общих черт. Отличительной особенностью расте-является их способность ассимилировать энергию солнечных лучей и использовать углекислый газ, воду и минеральные вещества на построение органических соединений. Общими чертами обмена веществ у растений и у животных являются некоторые процессы промежуточного внутриклеточного обмена углеводов, жиров и белков, как, например, р-окисление жирных кислот, аминирование и дезаминирование, карбоксилирование и декарбоксилирование, орнитиновый и лимоннокислый цикл и др. Все эти процессы осуществляются под влиянием ферментных систем, которые по своей химической природе и биологическому действию близки к ферментным системам животного организма. Однако и у растений, и у животных есть своя специфика как в смысле направленности действия ферментов, так и в отношении катализируемых процессов. [c.257]

    В связи с особой актуальностью охраны окружающей среды от загрязнения химическими реагентами большое внимание уделяется изучению способности ПАВ к биологическому разрушению в водной, почвенной и других средах. Биологическим разложением называют любое изменение (трансформацию) молекулы химического соединения, ведущее к упрощению структуры и изменению его различных свойств (физико-химических, токсикологических и др.) под влиянием живых организмов. Различают первичное и полное биологическое разложение. Так, гидрологическое отщепление от молекулы ПАВ активной сульфогруппы приводит к утрате веществом поверхностной активности, а с ней и способности к пенообразованию. В данном случае приемлемое для окружающей среды биоразложение совпадает с первичным разложением. Полное биоразложение — это распад вещества до простых неорганических соединений с образованием воды, углекислого газа, азота, аммиака и др. Известно, что алкилсульфаты разрушаются в результате гидролиза с образованием соответствующих спиртов которые окисляются до жирных кислот. В свою очередь последние подвергаются деструкции путем а- и р-окисле-ния. Вторичные жирные спирты (ВЖС) могут разлагаться по такому механизму ВЖС- спирт->кетон->оксикетон- дион альдегид-V кислота. Деструкция анионных ПАВ,, ведущая к потере поверхностной активности, может происходить либо путем отщепления от молекулы вещества гидрофильной группы, либо в результате последовательного окисления алкильного радикала. Отщепление гидрофильной, группы у синтетических алкилсульфатов, алкилсульфена-тов и алкиларилсульфенатов осуществляется в результате каталитического воздействия ферментов сульфатаз. [c.93]


    Кетонное расщепление является важной реакцией и в биологическом отношении раньше мы уже указывали, что окисление жирных кислот (стр. 246) а организме ведет к кетонам через 5-окси- и i-кетокарбоновые кислоты и что прогоркание жиров (стр. 270) вызвано действием плесневых грибков, превращающих жирные кислоты в fi-кетокарбоновые кислоты и последние в кетоны. [c.332]

    Таким образом, на втором этапе образуется практически единственный общий метаболит катаболизма биомолекул различных классов в клетках — активированная форма уксусной кислоты. Как отмечалось ранее (гл. 1), по критерию химических свойств уксусная кислота из всех образующихся в обмене структурных молекул (двух-трех углеродных фрагментов) наиболее предпочтительна для использования в биологических системах как для реакций биосинтеза, так и последующего катаболизма до образования конечных продуктов. Следовательно, выбор ацетил-КоА в качестве основного центрального метаболита однозначно целесообразен, и в этом проявляется одно из свойств живой материи — принцип молекулярной целесообразности. Катаболизм аце-тил-КоА — это его полное окисление до СО2 в цикле ТКК, реакции же анаболического характера — синтез холестерола, кетоновых тел и жирных кислот. [c.445]

    Прогресс в какой-нибудь одной области часто зависит от развития соседних областей знания. В науке очень редко можно решить центральную проблему, строго следуя намеченному плану, каким бы обоснованным и детальным он ни был. Подчеркивая некоторые особенности в исследовании биологического окисления жирных кислот, мы пытались показать, как формировались наши представления о механизме этого процесса здесь были использованы всевозможные экспериментальные подходы от цитологического исследования клето млекопитающих до изучения биохимии анаэробных бактерий или от изучения совсем другой, но тем не менее родственной метаболической системы (цикла трикарбоновых кислот) до выяснения химических свойств кофакторов ферментативных реакций. [c.20]

    Реакция г в табл. 8-4, напротив, не может быть осуществлена системой пиридиннуклеотидов вследствие неподходящего восстановительного потенциала. Необходима более сильная окисляющая система флавинов. (Однако обратная реакция, гидрирование связи С = С, частО протекает в биологических системах с участием восстановленного пи-ридиннуклеотида.) Реакции типа г имеют важное значение в энергетическом метаболизме аэробных клеток. Так, например, первой окислительной стадией при -окислении жирных кислот (гл. 9, разд. А,1) является а,р-дегидрирование ацил-СоА-производных жирных кислот. Аналогичной реакцией, протекающей в цикле трикарбоновых кислот, является дегидрирование сукцината в фумарат  [c.258]

    Исследование взаимосвязи путей метаболизма биологически активных соединений представляет научный и практический интерес. В метаболизме природных липидов процессы ферментативного окисления жирных кислот непосредственно влияют на содержание полиненасыщенных жирных кислот (ПНЖК) в клетке. Липоксигеназы (ЛОГ) КФ 1.13.11.12 относятся к классу железосодержащих оксигеназ и катализируют стереоспеци-фическое окисление ПНЖК, молекулы которых содержат хотя бы один 1,4 [c.15]

    Общим свойством всех реакций перекисного окисления полиненасыщенных остатков жирных кислот является промежуточное образование радикалов, которые обычно реагируют с кислородом, но могут вызывать реакции с другими субстратами. Между прочим, образующиеся гидроперекиси довольно неустойчивы в сложной биологической среде. [c.296]

    Для парентеральных препаратов используются биологически активные эмульгаторы липидной природы и неионные ПАВ, которые нашли широкое применение при получении кровезаменителей и жировых эмульсий для парентерального питания. Однако среди липидных эмульсий многие не нашли широкого использования, что связано с низкой степенью очистки основных компонентов и с высокой степенью окисления жирных кислот. Структурная организация липидной мицеллы зависит от вида присутствующих в ней фосфолипидов и от количества содержащегося между молекулами фосфолипидов холестерина. [c.645]

    В ТО время как. этими опытами было установлено биологическое значение 3-окисления, дальнейшие исследования Дэкина показали, что и in vitro жирные кислоты тоже можно окислить в 8-положении. Это удается с помощью 3%-ной перекиси водорода. Например, масляная кислота превращается в 3-оксимасляную, а при дальнейшем действии окислителя — в З-кетокарбоновую кислоту  [c.246]

    Цель занятия изучить биологические функции липидов, переваривание, транспорт, окисление жирных кислот. [c.206]

    Тканевое дыхание и биологическое окисление. Расиад органических соединений в живых тканях, сопровождающийся потреблением молекулярного кислорода и приводящий к вьщелению углекислого газа и воды и образованию биологических видов энергии, называется тканевым дыханием. Тканевое дыхание представляют как конечный этап пути превращений моносахаров (в основном глюкозы) до указанных конечных продуктов, в который на разных стадиях включаются другие сахара и их производные, а также промежуточные продукты распада липидов (жирные кислоты), белков (аминокислоты) и нуклеиновых оснований. Итоговая реакция тканевого дыхания будет выглядеть следующим образом  [c.306]


    Биологическое действие. Карнитин (витамин В ) участвует в белковом и липидном обменах. Он присутствует в большинстве клеток организма, в том числе в мышечных волокнах, и улучшает в них процессы аэробного энергообразования, так как осуществляет транспорт жирных кислот в митохондриях, где они окисляются с выделением энергии. Стимулируя окисление жирных кислот, карнитин способствует сохранению запасов гликогена в клетках, а участвуя в обмене липидов, — препятствует развитию атеросклероза. [c.125]

    В период восстановления после мышечной работы, когда в организме имеется достаточное количество субстратов биологического окисления и поставка кислорода к митохондриям клеток не ограничена, уровень кислородного потребления зависит от количества свободной АТФ, осуществляющей дыхательный контроль в митохондриях. Субстратами окислительных энергетических превращений являются накопившиеся во время работы анаэробные метаболиты молочная кислота, янтарная кислота, а-глицеро-фосфат, глюкоза, а на поздних стадиях восстановления — и жирные кислоты. Источником АДФ являются энергопотребляющие процессы, в первую очередь ресинтез КрФ из креатина, восстановление запасов гликогена и глюкозы, восстановление нарушенной во время работы структуры клеточных мембран, функционирование дыхательной и сердечно-сосудистой систем, активность которых некоторое время после работы сохраняется повышенной. [c.340]

    У всех буферных систем крови преобладает основный (щелочной) компонент, вследствие чего они нейтрализуют значительно лучше поступающие в кровь кислоты, чем щелочи. Эта особенность буферов крови имеет большое биологическое значение, поскольку в ходе метаболизма в качестве промежуточных и конечных продуктов часто образуются различные кислоты (пировиноградная и молочная - при распаде углеводов метаболиты цикла Кребса и Р-окисления жирных кислот кетоновые тела, угольная кислота и др.). Все возникающие в клетках кислоты могут попасть в кровяное русло и вызвать сдвиг pH в кислую сторону. Наличие большой буферной емкости по отношению к кислотам у буферов крови позволяет им нейтрализовать значительные количества кислых продуктов, поступающих в кровь, и тем самым способствовать сохранению постоянного уровня кислотности. [c.113]

    Свет, поглощаемый красителями (протопорфирином IX и др.), вызывает сенсибилизированное окисление жирных кислот, причем эффективность их фотоокисления возрастает по мере увеличения ненасыщенности жирных кислот. В ряде работ показана роль синглетного кислорода в этом процессе. Как в модельных липидных системах, так и в биологических мембранах возможно фотодинамическое перекисное окисление липидов, протекающее по типу цепной реакции с образованием свободных радикалов. Сенсибилизированное перекисное окисление липидов зарегистрировано в наружных сегментах палочек сетчатки (сенсибилизатор — родопсин) и в мембранах эритроцитов (сенсибилизатор — протопорфирин). [c.344]

    Известно, что токоферолы выполняют в организме две главные метаболические функции. Во-первых, они являются наиболее активными и, возможно, главными природными жирорастворимыми антиоксидантами разрушают наиболее реактивные формы кислорода и соответственно предохраняют от окисления полиненасыщенные жирные кислоты. Во-вторых, токоферолы играют специфическую, пока еще не полностью раскрытую роль в обмене селена. Селен, как известно, является интегральной частью глутатионпероксидазы-фермента, обеспечивающего защиту мембран от разрушающего действия пероксидных радикалов. Биологическая роль витамина Е сводится, таким образом, к предотвращению аутоокисления липидов биомембран и возможному снижению потребности в глутатиониероксидазе, необходимой для разрушения образующихся в клетке перекисей. Участие токоферолов в механизме транспорта электронов и протонов, как и в регуляции процесса транскрипции генов, и их роль в метаболизме убихинонов пока недостаточны выяснены. [c.220]

    Наиболее интенсивно процессы химического и биологического окисления смолистых веществ древесины протекают при ее хранении в виде щепы на открытом воздухе. При кучевом хранении количество жирных кислот убывает в большей мере, чем смоляных, причем в основном за счет ненасыщенных кислот. Содержание смолистых веществ в древесине уже после хранения в течение 2 мес может уменьшиться в ряде случаев на 40—50 %- Таким образом, при хранении древесины возможны значительные потери смолистых веществ вследствие течения различных процессов их деструкции. Образующиеся при этом окисленные кислоты ускоряют окисление нормальных смоляных и жирных кислот. [c.58]

    Под витамином Р подразумевается совокупность ненасыщенных жирных кислот — линолевой, линоленовой и арахидоновой (см. главу 7), которые не синтезируются в тканях организма, но необходимы для его нормальной жизнедеятельности. Витамин Р содержится в растительных маслах, суточная потребность человека в нем сравнительно велика и составляет около 5 мг. Витамин Р необходим для нормального роста и регенерации кожного эпителия, а также для синтеза простагландинов — важных биохимических регуляторов (см. главу 9). Витамин Р поддерживает запасы витамина А и способствует его более эффективному воздействию на обмен веществ. Витамин Р снижает уровень холестерина в крови, и в связи с этим для профилактики атеросклероза в медицинской практике применяются препараты незаменимых жирных кислот — линетол и линол. Для предотвращения пероксидного окисления и сохранения биологической активности ненасыщенных жирных кислот требуется витамин Е. [c.143]

    Антиоксиданты. В состав многих косметических изделий входят различные растительные масла (оливковое, касторовое и пр.), высокомолекулярные непредельные спирты, жирорастворимые витамины, высоконенасыщенные жирные кислоты. Эти продукты склонны к окислению кислородом воздуха, в результате чего образуются продукты окисления, накапливаются перекиси. Качество готовых изделий при этом ухудшается, снижается их биологическая ценность и появляется непри- [c.159]

    Последовательность реакций в процессе метаболизма жирных кислот в биологических системах изучена достаточно подробно и представляет собой известный процесс р-окисления. Эта последовательность включает пять отдельных реакций, каждая из которых катализируется специфическим ферментом включая три процесса — дегидрирование (гл. 8), гидратацию (гл. 3) [c.148]

    В случаях, когда биологически активные вещества разрушаются при традиционных методах измельчения и сущки, применяют технологию криогенного измельчения и сущки свежего лекарственного растительного сырья. При этом ингибируются такие биохимические процессы, как перекисное окисление липидов, денатурация и диссоциация белковых молекул, пигментация, которые необратимо меняют биохимические свойства веществ, содержащихся в сырье. Криогенная переработка растительного сырья позволяет полностью сохранить нативную структуру не только находящихся в нем витаминов, но и молекулярных комплексов, содержащих широчайший спектр необходимых человеку микроэлементов. Этот факт чрезвычайно важен для полноценного усвоения витаминов и микроэлементов организмом человека. Практика внедрения криогенных перерабатывающих технологий показала, что наиболее оптимальным является вариант их комбинированного применения, позволяющий совместить целый ряд промежуточных технологических этапов и приводящий к значительному уменьшению затрат на дорогостоящее криогенное оборудование и производственные площади. Кроме того, определенные комбинации криогенных технологий позволяют получить принципиально новые продукты переработки. К ним можно отнести реструктурированные водные растительные экстракты, содержащие активные фрагменты витаминов, сложных эфиров и аминокислот жирорастворимые фракции с витаминами А, Е, К, Р, получаемые из криосублимированного растительного сырья растительную клетчатку, очищенную от ненасыщенных жирных кислот и содержащую водорастворимые витамины С, Р и основные микроэлементы. [c.480]

    Для исследования расположения белков в мембранах, а также расположения олигомеров в ферментах, состоящих из многих субъединиц, был разработан ряд методов мечения [24,30] и сшивки [31—34]. Так, для сшивания молекул белков в мембране эритроцитов использовали окисление их внутренних меркапто-групп [30] после выделения комплекса образовавшиеся связи могут быть разрушены восстановительным расщеплением, что позволяло идентифицировать составляющие белки. Альтернативный подход [32,33] заключался в биосинтетическом введении в биологические мембраны жирных кислот, несущих светочувствительную группу сшивка производного жирной кислоты и смежного белка индуцировалась фотолизом. Сходные методы применяли для сшнвки белков [34] в мембранах эритроцитов. [c.124]

    По данной теме за период 1999-2002 гг. Проведено получение биологически активных соединений из классов порфиринов, пептидов, витаминов, полиненасыщенных жирных кислот. Изучено их взаимодействие в форме молекулярных ансамблей для выявления их биологического действия. Разработаны методы синтеза карборансодержащих порфиринов для исследования в борнейтронзахватной терапии рака, усовершенствован метод биосинтеза полиненасыщенных жирных кислот, необходимых в медицине и косметологии. Получены соединения для изучения фундаментальных биологических процессов (фотосинтез, биологическое окисление, биорегуляция). [c.12]

    Широко распространенным нуклеотидом, играющим решающую роль во многих процессах обмена, является кофермент А (ЫП). Его роль связана с реакциями трансацетилирования, окисления жирных кислот, декарбоксилирования а-кетокислот и с другими подобными биологическими превращениями. Кофермент А состоит из фрагмента аденин-3, 5 -дифосфата, соединенного через пирофосфорную группировку с остатком пантотеновой кислоты. Синтез кофермента А осуществлен в 1959 г. [25 . [c.335]

    Предельные и непредельные жирные кислоты играют важную роль в живой природе. Они входят в состав глицеридов, образующих основу клеточных мембран, и их следует классифицировать как биологически важные соединения. Непредельные алифатические кислоты — линолевая, линоленовая и арахидоновая, кроме этой функции, выполняют и другую, не менее важную. Освобождаясь из состава глицеридов и подвергаясь действию окислительных ферментов, они дают начало последовательностям реакций, приводящих в конечном счете к гидроксилированным непредельным соединениям с высокой биологической активностью. Из линолевой и линоленовой кислот образуются метаболиты с восемнадцатью углеродными атомами в цепи, из арахидоновой — двадцатизвенные. Много биологически активных веществ встречается также среди окисленных производных специфических разветвленных длинноцепных кислот, продуцируемых отдельными организмами. [c.28]

    Наблюдение, согласно которому многие производные жирных кислот под действием различных растительных тканей могут уменьшать длину своей цепи, позволяет предполагать, что ферменты, принимающие участие в реакциях Р-окисления, имеют относительно широкую специфичность. Однако некоторые результаты дают возможность предполагать, что ферменты Р-окисления из различных тканей все же имеют разную специфичность по отношению к ряду со-замещенных жирных кислот. Так, в опытах с колеоптилями пшеницы были активны все 2,4,5-трихлорфеноксиалкилкарбоновые кислоты, содержащие в боковой цепи четное число углеродных атомов. В то же время в опытах с тканями гороха и томатов активна была только 2,4,5-трихлорфеноксиуксусная кислота, а более высокомолекулярные гомологи этого ряда не проявляли никакой биологической активности. [c.307]

    Эти, а также многие другие исследования позволили сделать вывод, что при нормальнол биологическом расщеплении жирных кислот с четным числом атомов углерода происходит последовательно потеря двух атомов углерода, хотя единственным промежуточным соединением, которое удалось обнаружить (и то только в патологических случаях), была ацетоуксусная кислота. Результаты, полученные при изучении участия кофермента А в метаболизме жирных кислот [38, 39, 55—57], находятся в соответствии с развивавшимися ранее представлениями. Используя современные методы энзимоло-гии и спектроскопии, удалось получить количественные результаты, давшие возможность объяснить наблюдавшиеся факты значительно более определенно и подробно (см. ниже). Ферментативному окислению в присутствии кофермента А подвергались многие жирные кислоты с четным числом атомов углерода, но, несмотря на это, в качестве единственного промежуточного продукта была выделена снова только ацетоуксусная кислота (в виде производного кофермента А СН3СОСН2СО—S—КоА). Причина этого будет рассмотрена на стр. 285. [c.276]

    Продукты окисления высших ненасыщенных жирных кислот с высоким содержанием перекисей моделируют действие липидных радиотоксинов, проявляя широкий спектр радиомиметического действия на различных биологических системах. [c.223]

    Окислительное декарбоксилирование ПВК является одной из ключевых реакции в обмене углеводов. В результате этой реакции ПВК, образовавшаяся при окислении глюкозы, включается в главный метаболический путь клетки цикл Кребса, где окисляется до углекислоты и воды с выделением энергии. Таким образом, благодаря реакции окислительного декарбоксилирования ПВК создаются условия для полного окисления углеводов и утилизации всей заключенной в них энергии Кроме того, образующаяся при действии ПДГ-комплек-са активная форма уксусной кислоты служит источником для синтеза многих биологических продуктов жирных кислот, холестерина, стероидных гормонов, ацетоновых тел и других. [c.16]

    В последние роды много работали над выяснением мсханиз.ма биологического р-окисления. Проведенные исследования прежде всего показали, что первичным процессом является дегидрирование жирной кислоты в а, р-положении, после чего происходит присоединение воды к а, р-ненасыщенной карбоновой кислоте  [c.246]

    На рис. 11-3 некоторые бнолотнчески активные соединения расположены по мере возрастания степени окисленности углерода. Видно, что больщинство биологически важных промежуточных соединений отли-чается по степени окисленности от углеводов всего лищь на 2 электрона, причем ло мере удлинения цепи это различие (Имеет даже тенденцию К уменьщению. Исключительно трудно перемещаться при помощи ферментативных процессов между соединениям , содержащими 2, 3 и 4 атома углерода (т. е. в вертикальном направлении на рис. 11-3), если только они не находятся на уровне окисленности углеводов или соединений, расположенных правее, на несколько более высоком уровне окисленности. В то же время часто бывает возможно перемещаться по горизонтали, с легкостью используя окислительно-восстановительные реакции. Например, жирные кислоты собираются лз ацетатных единиц, которые расположены на том же окислительном уровне, что л углеводы, и после сборки восстанавливаются. [c.473]

    Пантотеновая кислота (витамин Вз). Входит в состав ферме тов биологического ацилирования, участвует в окислении и би( синтезе жирных кислот, липидов, в превращениях сахаро Отсутствие пантотеновой кислоты в организме вызывает вялост онемение пальцев ног. Признаки гиповитаминоза наблюдают редко. Пантотеновая кислота широко распространена в природ Основные источники (мг %) печень и почки — 2,5—9, гречиха [c.64]


Смотреть страницы где упоминается термин Окисление биологическое Окисление жирных кислот: [c.192]    [c.246]    [c.147]    [c.277]    [c.94]    [c.314]    [c.62]    [c.46]    [c.79]    [c.188]    [c.180]    [c.157]    [c.274]    [c.135]    [c.457]   
Биохимия (2004) -- [ c.328 ]




ПОИСК





Смотрите так же термины и статьи:

Биологические кислотами



© 2025 chem21.info Реклама на сайте