Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фенолы присоединение к хинонам

    ЛИШЬ в редких случаях. В тех редких случаях, когда отмечалось свободнорадикальное присоединение H l ориентация по-прежнему соответствовала правилу Марковникова, по-види-мому, потому, что образуется наиболее стабильный продукт [121]. Свободнорадикальное присоединение HF, HI и НС1 энергетически невыгодно (см. обсуждение в разд. 14.5 и при описании реакции 14-1). Присоединение НВг против правила Марковникова часто наблюдалось и в отсутствие пероксидов. Это происходит в результате того, что субстрат (алкен) адсорбирует кислород воздуха, образуя небольшие количества пероксидов (реакция 14-8). Присоединение по правилу Марковникова можно обеспечить тшательной очисткой субстрата, но практически этого нелегко добиться, и поэтому большее распространение получило проведение реакции в присутствии ингибиторов, например фенолов или хинонов, которые предотвращают протекание реакции по свободнораднкальному пути. Присутствие свободнорадикальных инициаторов, таких, как пероксиды, не ингибирует ионный путь реакции, но свободнорадикальное присоединение, будучи цепным процессом, идет намного быстрее, чем электрофильная реакция. В большинстве случаев оказывается возможным контролировать механизм (а следовательно, и ориентацию), добавляя пероксиды для проведения свободнорадикального присоединения или ингибиторы для осуществления электрофильного пути, хотя известны случаи, когда реакция по ионному пути идет так быстро, что может конкурировать со свободнорадикальным механизмом, и полного контроля достичь не удается. Присоединение НВг, НС1 и HI по правилу Марковникова с высокими выходами осуществлено с использованием межфазиого катализа [122]. Альтернативные методы присоединения НВг (или HI) против правила Марковникова рассмотрены в разделе, посвященном реакции 12-28 (т. 2). [c.162]


    Продукты присоединения фенолов к хинону отличаются интенсивной окраской и той легкостью, с которой они распадаются в растворах на свои составные части. [c.249]

    Несмотря на то что между хинонами и двухатомными фенола ми существует тесная связь, хиноны не являются ароматическими соединениями в строгом смысле слова. Это видно из реакций присоединения. Две структуры — бензоидная и хиноидная легко пере- ходят друг в друга  [c.314]

    Для начала реакции присоединения не обязательно добавлять радикалы извне, поскольку алкены поглощают кислород воздуха и образуют перекиси, которые могут сами служить инициаторами. Поэтому в тех случаях, когда хотят, чтобы реакция присоединения протекала в основном по ионному механизму (т. е. по правилу Марковникова) и приводила к получению 2-бромпропана, необходимо либо подвергать алкен тщательной очистке непосредственно перед реакцией (чего нелегко достичь на практике), либо добавлять в реакционную смесь акцепторы радикалов (ингибиторы), такие как фенолы, хиноны и т. д., которые реагируют с радикалами и предотвращают развитие быстрой цепной реакции. [c.291]

    Присоединение к хинону анизола и фенола производилось в сероуглеродном растворе при этом были получены соответственно 2,5-бис-(4 -метоксифенил)-гидрохинон и 2,5-бис-(4 -оксифенил)-гидрохинон. [c.660]

    В главе 1, написанной Томсоном, автором известной монографии по природным хинонам, рассмотрены структура и реакционная способность фенольных соединений, важнейшие типы природных фенолов, свойства и реакции фенольного гидроксила (способность к образованию водородных связей, этерификация, окисление и др.), вопросы таутомерных превращений в фенольном ряду. Особо интересен здесь раздел, касающийся основных типов реакций окислительного присоединения как возможной модели свободно-радикальных процессов при биосинтезе природных фенолов. Нельзя, однако, не отметить, что химия фенольных соединений в этой статье освещена весьма поверхностно. Так, например, автор почти не рассматривает вопрос о способности фенолов претерпевать переход ароматической структуры в циклогексадиеноновую, что составляет одно из общих свойств фенольных соединений, которые они проявляют в радикальных и электрофильных реакциях замещения [8]. В общем виде фенол-диеноновую перегруппировку в реакциях фенолов можно описать следующей схемой  [c.6]

    Сре (и продуктов присоединения хинона особенно выделяются те, которые получаются взаимодействием одно- и двухатомных фенолов вообще бензохинон соединяется с 2 молекулами одноатомного фенола, образуя фенохинон С8Н4О2 2СвН50Н, и с 1 молекулой двухатомного фенола. [c.249]


    Для двухатомных фенолов характерна более выраженная тенденция к кетонизации, чем для фенола, вследствие более низкого барьера энергии между формами. Нет данных о сколько-нибудь больших концентрациях кетоформ в растворах гидрохинонов (1,4-дигидроксибензолов), хотя и был получен дикетон (40) в твердом состоянии он стабилен при 0°С в течение длительного времени. Перегруппировка в гидрохинон в апротонных растворителях протекает медленно, однако в протонной среде она идет быстро и необратимо стабильность (40), следовательно, определяется не термодинамическими, а кинетическими факторами [28]. Дибромке-тон (41) можно получить путем присоединения брома к л-бензо-хинону енолизация (41) также протекает необратимо. Существуют веские данные в пользу того, что в случае л-двухатомных фенолов оксо-формы, которые не удается выделить, служат интермедиатами во многих реакциях, особенно в основной среде например, как известно, резорцин при гидрировании в щелочных растворах дает циклогександион-1,3 (42). [c.188]

    Кроме я-бензохинона, соединения типа хингидрона образует и 1,4-пафтохинон в настоящее время хингидронами называют вообще продукты присоединения хинонов и нафтохинонов к фенолам. [c.61]

    В противоположность олефинам продукты окисления ароматических ядер, по-видимому, образуются путем присоединения к сопряженной системе, а не путем замещения. При 1,4-присоединении к бензольному ядру образуется хиноидная система, которую всегда находят среди первичных продуктов, и вполне возможно, что хорошие выходы малеинового ангидрида из бутадиена имеют такое же происхождение [16]. Иоффе и Волькенштейн [162] указывают, что окисление бензола на окислах-полупроводниках р-тнпа (как, например, СиО) приводит к полному сгоранию (СО, Oj), но с одновременным образованием следов фенола и дифенила, которые не были найдены при селективном окислении на окислах-полупроводниках п-типа (как, например, V2O5) в этом случае главными продуктами являются хинон и малеиновый ангидрид. Теоретические соображения заставляют думать, что в первом случае при диссоциативной адсорбции gHg образуются фенильные радикалы gHe, а во втором случае ассоциативная адсорбция приводит к образованию хиноидных бирадикалов  [c.177]

    Природа сшивающего агента (вулканизатора) и, следовательно, способ вулканизации зависит от природы каучука. Каучуки, содержащие в молекуле двойные связи (НК, СКС, СКИ, СКД) вулканизируются серой при 140—160°С (серная или горячая вулканизация) или, реже, хлористой серой 8гС12 без нагревания (холодная вулканизация). Серные вулканизаты не обладают достаточно высокой термической и химической стойкостью, поэтому, эти каучуки вулканизируют также пероксидами, хинонами, азо- и диазосоединениями, феноло-формаль-дегидными олигомерами. СК, содержащие функциональные группы (карбоксилатные, уретановые, хлоропреновый и т.п.) вулканизируются бифункциональными агентами, реагирующими с этими группами по реакциям замещения или присоединения (оксиды двухвалентных металлов, соли непредельных кислот и др.). [c.440]

    И в данном случае вероятно реакция идет по обычной схеме присоединений к хинону (ср. Б, 1П, 28, 39 и т. д.). Сначала происходит присоединение одной молекулы фенола с образованием р-оксифенилгидрохинона, который окисляется не вошедшим в реакцию хиноном в р-оксифенилхинон. Последний присоединяет вторую молекулу фенола и вновь окисляется незамещенным хиноном. Аналогичным образом конденсируется а-иаф-тол с а-нафтохиноком и хинои с резорцином или пирогаллолом. Конденсация хинона с резорцином проходит при комнатной те.мпературе уже под влиянием 10%-ной серной кислоты. При подобных конденсациях Пуммерер получал две формы одного и тог о же вещества, например из бензохинона и фенетола — желтую и красные формы. В растворах оба вещества повидимому идентичны и вероятно являются полиморфными разностями. [c.336]

    Однако в достаточно разбавленном бензольном растворе превращение метиленхинона в стильбенхинон (VI) может быть резко замедлено. Как показали наши исследования, 2,6-ди-трет-бутил-4-метиленхинон (II) достаточно устойчив в бензольном растворе в концентрации 0,1 М. Если на этой стадии к бензольному раствору прибавить тот или иной нуклеофильный агент (вторичный или первичный амин, тиофенолы и т. п.), то образования стильбен хинон а не произойдет совсем, и с хорошими выходами образуются соответствующие продукты 1,6-присоединения. Таким образом, из ионола практически в одну стадию нами был получен ряд азот-и серусодержащих экранированных фенолов (VIII—XIX). [c.255]

    Химизм реакций, приводящих к И. п., не во всех случаях надежно установлен. Наиболее подробно исследовано ингибирующее действие хинонов, многоядерных углеводородов, ароматич. питросоединений и производных бензола (см, табл1щу). Хиноны реагируют с макрорадикалами через атомы кислорода, причем одна молекула хинона обрывает две реакционные цепи и входит в макромолекулу. Многоядерные углеводороды присоединяются к макрорадикалам через наиболее реакционные атомы углерода, напр, в случае антрацена присоединение происходит в мезо-полотении. Нитросоединения реагируют через нитрогруппу. Фенолы, в частности полнфенолы, и ароматич. амины — слабые ингибиторы, в отличие от продуктов их окисления, имеющих хиноидное строение. Ингибиторами являются металлы с переменной валентностью, напр, Fe + в растворимой форме, а также кислород. Из равенства (4) видно, что эффект ингибирования определяется условиями полимеризации. При увеличении скорости инициирования эффект ингибирования понижается, а при повышении темп-ры может увеличиваться или уменьшаться в зависимости от того, что больше — или 0,5 IF и ич энергии активации соответственно реакций (I) или (II) и инициирования]. [c.416]


    Даже в случае присоединения НВг длины реакционных цепей весьма малы, гораздо меньше, чем в случае присоединения галогена для получения достаточного количества радикалов обычное количество добавляемого пероксида должно быть выше, чем следовое так, для препаративных целей требуется 0,01 моль пероксида на 1 моль алкена. Однако на практике того количества пероксида, которое образуется в реакционной среде рследствие автоокисления алкена кислородом воздуха (см. разд. 11.5.2.2), может быть достаточно для автоинициирования радикального присоединения НВг, независимо от того, желательно оно или нет. Начавшись, реакция по этому механизму протекает гораздо быстрее, чем конкурирующее гТрисоединение по полярному механизму, поэтому в реакционной смеси будет преобладать продукт присоединения против правила Марковникова, например (65). Если необходимо получить продукт присоединения по Марковникову, например 2-бромпропан из пропена, необходима тщательная очистка алкена перед применением или добавление ингибиторов (хорошие акцепторы радикалов, такие как фенолы, хиноны и др.), чтобы удалить любые присутствующие в алкене радикалы или потенциальные источники радикалов. Указанный продукт гораздо легче получить препаративно. Практически полный контроль ориентации присоединения НВг в любом направлении может быть достигнут в препаративных условиях путем введения в реакционную смесь либо пероксидов (инициаторы радикалов), либо ингибиторов. Введение инициаторов или ингибиторов радикалов для контроля ориентации используется не только в случае незамещенных алкенов 3-бромпропен, например, может быть превращен в 1,2-или 1,3-дибромпропан. [c.356]

    Известно и применяется большое число ингибиторов. Большинство их относится к классам фенолов (гидрохинон), аминов, аминофенолов (бензиламино-фенол), хинонов и меркаптосоединений. Последние особенно пригодны для использования в качестве регуляторов, благоприятствующих 1,4-присоедннению н задерживающих 1,2-присоединение. [c.437]

    Фенолы или амины особой структуры выполняют функцию радикальных акт цепторов, перенося атом водорода от атома кислорода или азота к углеводородному или пероксидному радикалу. Образовавшиеся таким образом радикалы ингибитора взаимодействуют путем рекомбинации радикалов или переноса электрона с образованием ионных соединений — хинонов или хинониминов, или вследствие реакций присоединения образуют комплексы, которые не поддерживают развитие цепной реакции автоокисления. В последующих реакциях часто образуются эфиры, кетоны или полиароматические системы. [c.188]


Смотреть страницы где упоминается термин Фенолы присоединение к хинонам: [c.417]    [c.306]    [c.162]    [c.301]    [c.301]    [c.489]    [c.515]    [c.10]    [c.515]    [c.253]    [c.342]    [c.10]    [c.2093]    [c.2093]    [c.659]    [c.144]    [c.429]    [c.429]   
Методы органической химии Том 2 Издание 2 (1967) -- [ c.476 ]

Методы органической химии Том 2 Методы анализа Издание 4 (1963) -- [ c.476 ]




ПОИСК





Смотрите так же термины и статьи:

Хиноны



© 2025 chem21.info Реклама на сайте