Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хиноны природные

    Сушествование и роль ММВ с участием протона в нефтяных системах доказаны экспериментально [23,29,69,75,141,143,154...157]. Так, в асфальтенах природных битумов и нефтей значительная часть кислорода входит в состав ОН-групп, почти полностью участвующих в образовании комплексов с Н-связью и не исчезающих даже при очень больших разбавлениях четыреххлористым углеродом [70,75,141,157]. Интенсивность Н-связей возрастает с увеличением содержания кислорода во фракциях асфальтенов или с ростом их полярности [141]. Аналогично ведут себя и КН-группы. Многие гетероорганические соединения битума, в частности, содержащие кетонные, хинонные, карбоксильные и циклические амидные группы, ведут себя как Н-акцепторные основания и активно участвуют в образовании Н-связи [141,157]. Асфальтены и их групповые компоненты при взаимодействии с фенолом и двухатомными спиртами проявляют свойства Н-акцепторных оснований и образуют Н-связи с энтальпией 23-24 кДж-моль- [141,154] не исключается образование и более слабых Н-связей. Концентрация Н-акцепторных оснований в асфальтах не менее 2 ммоль-г а окисление воздухом при повышенных температурах вызывает увеличение их Н-акцепторной основности [154]. Метилирование, ацетилирование и другие реакции связывания активного водорода значительно увеличивают Н-акцепторную основность асфальта, что указывает на то, что в асфальте Н-кислоты и Н-основания находятся в Н-связанном состоянии [141,143,154]. Не исключается возможность образования внутримолекулярных Н-связей [141,143,155]. [c.66]


    Бензохинон (раздел 8.4.5) и его производные являются эффективными составляющими выполняющих оборонительные функции секретов некоторых жуков. Сложные производные 1,4-бензохинона, убихиноны (коферменты Р), необходимы для переноса электронов в клеточных мембранах. К производным хинонов относится и витамин К, повышающий свертываемость крови, а также ряд природных красителей (разд. 7.9.2.2). [c.182]

    Хиноны являются важными представителями органических соединений, хотя методов синтеза хинонов известно немного. Хино-новое кольцо содержится в некоторых органических красителях и во многих природных соединениях, таких, как пигменты, витамины и ферменты I —3]. [c.201]

Таблица 8.3.4. Некоторые необычные природные хиноны. Таблица 8.3.4. Некоторые необычные природные хиноны.
    Многие производные хинонов составляют важную группу природных веш еств -красителей, пигментов, антибиотиков, витаминов и т.д. [c.1776]

    Хиноны (некоторые, родственные более сложным ароматическим системам, см. гл. 35) были вьщелены из природных источников (плесени, грибков, высших растений). Во многих случаях они, по-видимому, принимают участие в окислительно-восстановительных циклах, очень важных для живых организмов. [c.926]

    Подробнее детали различных биосинтетических процессов, ведущих ко многим первичным метаболитам типа аминокислот, пуринов и пиримидинов, описаны в пособиях по биохимии. Целью последующего обсуждения является прежде всего систематизация собранной в течение последней четверти столетия информации о путях биосинтеза некоторых более сложных природных молекул, таких, как стероиды, гем, хлорофилл и витамин B12, биологические функции которых частично или полностью известны. Другой целью является описание путей биосинтеза, которые природа избрала для создания колоссального изобилия вторичных метаболитов типа поликетидов, алкалоидов, фенолов, хинонов и различных микробных антибиотиков. Химики-органики приложили немало усилий для расшифровки запутанных деталей многих из этих процессов, не только выяснив отдельные стадии биосинтеза, но и определив роль ферментов в тончайших стереохимических аспектах биосинтетических реакций. В последующих главах эти и другие пути биосинтеза будут рассмотрены более детально. [c.406]


    Почти все природные хиноны представляют собой твердые вещества и легко кристаллизуются. Большинство из них хорошо растворимы в органических растворителях, тогда как гликозиды и некоторые карбоновые кислоты способны растворяться в воде. Хиноны, которые одновременно являются фенолами или карбоновыми кислотами, растворимы в щелочных водных растворах. [c.95]

    Из природных источников, главным образом из грибов и различных тканей высших растений, было выделено около 100 бензохинонов, из которых почти все являются 1,4-бензохи-нонами. К бензохинонам принадлежат и такие важные в биологическом отношении молекулы, как пластохинон (3.13) и уби-хинон (3.14). Образцы убихинонов обычно получают в виде смесей молекул с различной длиной изопреноидной цепи (изо- [c.99]

    Антрахиноны являются самой большой группой природных хинонов В растениях, грибах и лишайниках найдено почти 200 представителей этой группы Наиболее широко распространенным антрахиноном является, вероятно, эмодин (3 26), который был выделен из плесневых и высших грибов, лишайников, цветковых растений и насекомых. Однако в свежесобранных растительных тканях содержится очень мало эмо-дина или он вообще отсутствует. В большинстве случаев (если не во всех) при разрушении или высушивании тканей в собст- [c.101]

    Для ХИНОНОВ наблюдается существенно иная картина. Эта группа включает соединения с различными углеродными скелетами и системами колец, обладающие, однако, одним общим свойством — циклической ендионовой, или хиноновой, структурой. Сколько-нибудь исчерпывающий систематический обзор состава хинонов природных тканей в настоящее время отсутствует, однако соверщенно очевидно, что химикам-органикам еще предстоит открыть и установить структуру значительного числа разнообразных новых хинонов. Возможно, при этом будут рещены некоторые сложные стереохимические проблемы. [c.123]

    Бензохинон, или просто хинон, С6Н4О2 — кристаллы светло-желтого цвета с характерным раздражающим запахом. Темп, плавл. 116° С. Довольно трудно растворяется в воде перегоняется с водяным паром. Получен впервые в 1838 г. А. А. Воскресенским из природной хинной кислоты путем окисления. В настоящее время его получают окислением гидрохинона (см. выше), а промышленности — анилина (стр. 390). [c.375]

    Первоначально (конец XVIII и первые десятилетия XIX в.) в органической химии широко использовали метод окисления — первый способ искусственного получения органических соединений из сложных природных веществ животного и растительного происхождения. Так, А. А. Воскресенский окисляя хинную кислоту оксидом марганца (IV) и серной кислотой, в 1836 г. получил хинон С12Н804(СбН402). В том же году О. Лоран выделил фталевую кислоту окислением нафталина. [c.239]

    Синтетические структуры на основе порфиринов, содержащие донорно-акцешорные заместители (аминокислоты, пептиды, хиноны), являются удобными моделями для изучения направленного переноса энергии и электронов в природных фотосинтетических процессах. Они могут быть использованы как катализаторы окисления органических субстратов и могут служить объектами исследования механизмов каталитических актов ферментных систем. [c.154]

    Значительное число природных пигментов, оказавшихся хинонами,, было выделено из высших и низших растений, а несколько членов это го ряда было 1г айдено в животных организмах. Некоторые из них являются красителями, другие — регуляторами роста, антибиотиками, катализаторами дыхательных процессов, ингибиторами дыхания. Хотя в дальнейшем будут обсуждаться только бензо-, нафто- и фенантрен-хиноны, однако известны также природные хиноны и других типов. Так, плесени образуют большое число антрахинонов, а пигменты тлей являются периленхинонами. [c.430]

    И в связи с этим, основные группы этого класса природных соединений могут быть представлены следующим рядом фенолы — содержат только гидрокси-функции фенолокислоты — содержат гидрокси- и карбоксифункции ароматические соединения пиранового ряда — а-пироны, у-пироны, соли пирилия хиноны бензольного, нафталинового и антраценового рядов, также содержащие фенольные группы. Определение "растительные" тоже можно опустить в настоящее время, поскольку различные представители вышеперечисленных групп найдены и в микроорганизмах, в грибах, в морских организмах. [c.194]

    Что является непосредственными продуктами окисления фенольных природных соединений Во-первых, это орто- и пара-хиноны, их образование особенно характерно для простых фенолов и малозамещенных фенолокислот (схема 8.1.3). [c.198]

    Природный лигнин в древесине либо бесцветен, либо очень слабо окрашен, что свидетельствует о незначительном содержании в нем хромофорных групп, в процессах выделения лигнина из древесины в нем накапливаются хромофоры (сопряженные с бензольным кольцом двойные связи и карбонильные группы и др.) и может происходить образование хромофоров, поглощающих в видимой области, таких как хинонные структуры различного типа. Поэтому цвет препаратов лигнина зависит от метода выделения и может быть обусловлен как изменениями в самом лигнине, так и наличием окрашенных примесей нелигнинной природы. Так, нативный лигнин Браунса и ЛМР имеют светло-кремовый цвет, а кислотные лигнины - темно-коричный. [c.411]


    Убихиноны, или коферменты Р — группа производных бензо-хинона общей формулы (28). В природных соединениях число изопреноидных звеньев варьируется от б до 10. Так, в убихино-нах человека и больщей части млекопитающих содержится 10 таких звеньев, в то время как у большинства микроорганизмов это число колеблется между б и 8. В ранних работах для убихинонов использовалась запутанная номенклатура и несколько систем нумерации. В настоящее время название убихинон предпочитают коферменту р , а число изопреноидных звеньев обозначают прибавлением цифр б—10 в суффиксе. Так, убихинон-10 характерен для человека. Из природных источников выделены два других продукта, родственных убихинону-10. Один из них, убихроменол (29), легко образующийся в результате циклизации убихинона-10, возможно, является артефактом. Другой представляет собой частично восстановленное производное убихинона-10, в котором двойная связь концевого изопреноидного звена насыщена. [c.596]

    Несколько типов фоторезистов образуют базу традиционной фотолитографии. Еще в 1852 г. запатентовано [пат. Великобритании 565] использование смеси бихроматов с желатиной экспонирование такого слоя светом делает освещенные места нерастворимыми в воде, они служат печатающими элементами в малотиражной факсимильной печати. Материалы этого типа ( хромированные коллоиды ) применяются и сегодня, непрерывно совершенствуясь в связи с новыми областями применения. Затем были использованы и другие негативные резисты, разработанные А. Мури в 1931 г. Вначале светочувствительная система основывалась на фотодимеризации коричной кислоты и ее производных в матрице природных пленкообразующих смол (копала, кумароновых и других подобного типа), использовавшихся для предотвращения кристаллизации коричной кислоты. Эфиры коричной кислоты и поливинилового спирта [пат, США 2725372, 2690966] явились первым типом нового поколения фоторезистов, появившихся на международном рынке в 1953 г.,—KPR (Kodak Photo Resist) (гл, IV). 3 1950 г. были описаны позитивные резисты на основе о-хинон-диазидов и новолачных смол [пат, Великобритании 708384] (гл. П), а в 1955 г. — негативные резисты, образование рельефа которыми основано на сшивании природного и синтетического [c.13]

    Аналогичное наблюдение было сделано также Форменом [26а] для природного елового лигнина. Это уменьшение метоксилов может вызываться образованием о-дифенолов, которые в свою очередь, возможно, окислялись до о-хинонов. При метилировании джута до облучения разрушение заметно уменьшалось. [c.575]

    Каротиноиды (гл. 2) являются полиенами, которые имеют хромофор, представляющий собой протяженную систему сопряженных двойных связей. Другие группы природных пигментов обязаны своей окраской другим хромофорам. В большинстве случаев в их образовании участвует сопряженная или ароматическая я-электронная система, в которой присутствуют добавочные электрон-донорные или электрон-акцеп-торные группы особенно важны атомы азота и кислорода. Разделение зарядов, характерное для молекул этого типа, может вносить значительный вклад в общую резонансную структуру, что приводит к высокой степени стабилизации, особенно в возбужденном состоянии. Поэтому необходимая для возбуждения энергия невелика, и может происходить поглощение видимого света. Этот случай хорошо иллюстрируют хиноны и аналогичные им системы, которые служат основой многих природных пигментов. Наиболее существенной особенностью других классов соединений является вклад в гетероароматиче-скую систему электронов атомов кислорода и азота, не участвующих в образовании связей. [c.21]

    Каротиноиды являются тетратериенами, н нх биосинтез происходит ио нормальному изопреноидному пути, дающему начало также и другим важным природным продуктам, таким, как каучук, стероиды, содержащиеся во многих эфирных маслах MOHO-, сескви- и дитериены, а кроме того, боковым цепям хинонов, участвующих в переносе электронов. [c.60]

    Многие природные хиноны имеют фенольные ОН-группы и как следствие слегка кислую реакцию. Благодаря этому они способны к ионизации и образованию солей в щелочной среде. Зто свойство особенно ярко выражено в случае гидроксибензо-хинона (3.9) и 2-гидрокси-1,4-нафтохинона (3.10). [c.94]

    Спектры поглощения хинонов обычно измеряют в этаноле в тех же случаях, когда используются другие растворители, например хлороформ, значения ктги несколько отличаются от стандартных. Таблицы максимумов поглощения природных -и модельных хинонов приведены в монографии Томсона (ТНот-зоп, 1971), в которой также обсуждаются их ИК-, ЯМР- и масс-спектры. [c.98]

    Имеется также ряд неисследованных возможностей и в проблеме биосинтеза хинонов. В настоящее время выяснено, что они синтезируются по двум (иногда трем) главным биосинтетическим путям, однако пока детали этих путей изучены на слищком малом числе примеров. Необходимо отметить, что в данном случае мы имеем интересную ситуацию, когда два соверщенно различных пути используются для биосинтеза очень сходных и даже одних и тех же соединений. Это позволяет разрабатывать вероятные пути и механизмы биосинтеза индивидуальных природных хинонов. Существует также щиро-кий простор для экспериментального выяснения биосинтетических путей, ведущих к тем или иным соединениям, и изучения принимающих в них участие ферментных систем, которые, за очень редкими исключениями, остаются соверщенно неисследованными. Пока нет никаких данных, касающихся регуляции биосинтеза хинонов. К проблемам, созревщим для биохимического изучения, можно отнести также локализацию хиноновых пигментов внутри клетки, возможную связь хинонов с белками или другими веществами и функции хинонов в тканях. [c.123]

    Чем больще становится известно о действии, оказываемом некоторыми хинонами на живые ткани, и чем яснее установлен механизм этого действия, тем больщий интерес вызывают хиноны как лекарственные средства, и это в свою очередь стимулирует поиски новых природных типов и структур хинонов. [c.123]

    В качестве дополнительного источника сведений о природных хинонах следует воспользоваться всеобъемлющей монографией Томсона (ТЬотзоп, 1971), которая дает исчерпывающий обзор химии всех природных хинонов, в том числе пигментов, которые были открыты к 1970 г. Она также содержит живое описание первых работ по установлению структуры некоторых соединений классическими методами и занимательную историю использования некоторых важнейщих природных [c.123]

    Растения и грибы синтезируют много веществ фенольной природы. Окисление этих веществ полифенолоксидазой дает во многих случаях хиноны, которые легко полимеризуются до черных безазотистых веществ алломеланинового типа. В результате ферментативного окисления пирокатехина (7.7) образуется не только о-бензохинон, но и такие продукты, как гидрокси-л-бензохинон (7.21). Природные пирокатехиновые алломеланины, по-видимому, образуются путем полимеризации хиноновых молекул, подобных упомянутым выше, с образованием разветвленных структур, таких, как (7.8). [c.272]

    Специфической особенностью масс-спектров хинонов является существенное увеличение пиков М-Ь2 по сравнению с ожидаемыми в расчете на природную распространенность изотопов. В случае п-бензохннонов в зависимости от условий съемки спектров это увеличение может варьироваться от 2 до 30%. Пики M-f2 становятся особенно заметными, если масс-спектро-метр содержит адсорбированную на металлических поверхностях воду. Этот эффект наиболее сильно проявляется в случае [c.212]

    Но резина не состоит из одного каучука, это сложная смесь, в которую кроме каучука, для придания резинам требуемых свойств, вводят наполнители активные и неактивные, представляющие собой природные или синтетические неорганические соединения разных классов, технический углерод (углеродистая сажа) и др. Органические вещества, входящие в резину как мягчи-тели и пластификаторы, являются продуктами переработки нефтяной, лесотехнической, пищевой и ряда других промышленностей. Антиоксиданты служат для защиты каучука в резине от старения (см. разд. II.5.4). В качестве вулканизующих веществ применяют (главным образом) серу, некоторые полисульфидные ускорители, органические перекиси, хиноны и их производные, окислы некоторых металлов, различные смолы. В состав резин входят также ускорители вулканизации, принадлежащие к различным классам органических соединений, активаторы вулканизации, компоненты специального назначения, в частности порообразующие вещества, вещества, 1снижающие активность ускорителей в подготовительных процессах, красители, фунгициды для тропических резин и другие вещества [77]. [c.43]

    Как известно, хлорированные фенолы в большом объеме производятся в промышленности например, мировое производство 2,4-дихлорфенола (10-1), используемого для получения гербицидов, измеряется сотнями тысяч тонн в год. Токсические свойства хлорированных фенолов стимулировали необходимость включения их в перечень строго контролируемых антропогенных поллютантов [1]. Приступая к обсуждению природных галогенированных фенолов, мы рассмотрим только те соединения, которые синтезируются организмами посредством присуш их им метаболических методов. Особо подчеркнем то обстоятельство, что в данной главе обсуждаются производные бензольного ряда, а также производные от них хиноны и циклитолы. [c.150]

    Среди природных нафтохинонов и высших хинонов обнаружены метаболиты, содержащие атомы хлора и брома. Впервые анза-макроциклический нафтомицин А (15-64) был обнаружен в 1969 г. в экстрактах Streptomy es sp. [66]. Однако, тогда не удалось установить структуру этого соединения, хотя частично работа по идентификации метаболита была сделана [67, 68]. Спустя [c.223]

    В природных объектах найдено большое число выосжоахтивных производных хинона и 1,4-нафтохинона. Например, многие природные пигменты, выделенные из вноших и ниэшх растений и животных организмов, являются хивонами. Среди них есть ве только красители, но и регуляторы роста, антибиотики, катализаторы дыхательных процессов. [c.6]


Смотреть страницы где упоминается термин Хиноны природные: [c.14]    [c.730]    [c.12]    [c.431]    [c.443]    [c.139]    [c.270]    [c.540]    [c.407]    [c.277]    [c.251]    [c.5]    [c.110]    [c.114]    [c.122]    [c.124]    [c.407]   
Органическая химия Углубленный курс Том 2 (1966) -- [ c.422 ]




ПОИСК





Смотрите так же термины и статьи:

Хиноны



© 2025 chem21.info Реклама на сайте