Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вода гидратационная

    Нуклеиновые кислоты. Основным типом организации вторичной структуры нуклеиновых кислот является двойная спираль, состоящая из двух полинуклеотидных цепей. Существует ли со стороны регулярной структуры спирали дополнительное-воздействие на воду по сравнению с воздействием отдельных нуклеотидов Этот вопрос исследовался акустическим методом для различных типов спиральных структур полинуклеотидов [149], В качестве гидратационной характеристики использовали концентрационный инкремент скорости ультразвука А, который связан с парциальными объемами и сжимаемостью соотношением [c.61]


    И увеличивает отрицательные. Основываясь на этом, Самойлов разработал термохимический метод определения чисел гидратации. Эти числа для катионов щелочных металлов оказались равными примерно 4, а для анионов — от 4 до 5. Автор считает, что гидратационное число 4 соответствует наименьшему нарушению структуры воды при образовании раствора ионов. [c.144]

    Рассеяние тепла. Этот важный фактор огнестойкости достигается введением наполнителей, которые в процессе горения способствуют протеканию эндотермических реакций. К таким, эндотермическим реакциям обычно относятся образование газообразных продуктов разложения, выделение гидратационной воды и ее испарение и др. [c.201]

    Оба этих ПАВ показывают распространенные особенности бислойной упаковки, найденные и описанные в работах для монокристаллических структур ПАВ. В случае моногидрата Д С углеводородные хвосты организовываются по типу хвост к хвосту в отличие от структуры ДАБ, где углеводородные хвосты укладываются в виде гребенчатой структуры . Упаковки типа голова к голове и хвост к хвосту определяют неполярные или гидрофобные з астки, области, занятые углеводородными хвостами, а концевые полярные группы определяют полярные или гидрофильные участки. Полярные области дают возможность включения молекулы воды (гидратационной), которая обнаруживается во множестве различных полиморфных ПАВ. Степень гидратации концевых полярных групп (голов) говорит о возможности варьирования эффективного размера концевой полярной группы и площади ее проекции на плоскости, параллельной к бислою. Эффективный размер концевой группы должен соотноситься с дополнительной степенью наклона цепей. Маленький объем концевой полярной группы говорит о необходимости незначительного наклона цепей. При увеличении эффективного размера и взаимного отталкивания концевых групп цепи должны иметь больший наклон для более плотного заполнения пространства гидрофобного участка. [c.143]

    Применение молекулярных сит [17] ограничивается следующими условиями они способны реагировать с концентрированными кислотами (применяются в области pH от 4 до 12), они могут реагировать с алюминием во влажном состоянии, так как обладают слегка щелочной реакцией, поэтому для конструкции аппаратуры нельзя применять алюминий. Молекулярные сита нельзя нагревать выше 350° С, так как гидратационная вода и другие адсорбирующиеся молекулярными ситами вещества могут быть удалены путем нагревания. Молекулярные сита можно легко регенерировать после их применения, для этого их нагревают до температуры 150—350° С. [c.53]


    Вокруг твердой гидрофильной частицы вода образует уплотненную оболочку. Повышенная плотность гидратационной воды, доходящая до 2,5, вызывает изменение ее физических свойств температура замерзания ее ниже, электрическая проницаемость 2,2 (вместо 81). Вода гидратационных оболочек не участвует в растворении, почему объем, занимаемый ею в растворе, называется и е -растворяющим объемом. Если в раствор сахара ввести гидрофильный порошок, например, глину, то концентрация са- [c.36]

    Наш опыт изучения гидратационных характеристик слоистых силикатов [66] позволяет, однако, связывать с гидратацией ионов-компенсаторов появление только внутренней части граничного слоя связанной воды. Принятие этой концепции позволяет объяснить большую толщину слоя адсорбционно связанной воды для каолинита по сравнению с мусковитом. Причину появления внешней части граничного слоя мы, как уже указывалось, склонны объяснять структурной необходимостью существования промежуточного слоя между адсорбционно и осмотически связанной водой. Правомочность этого объяснения, кроме всего прочего, подтверждается сильным влиянием гидрофильности — гидрофобности поверхности на развитие структурных сил. [c.43]

    Таким образом, из совокупности данных, полученных методом молекулярного щупа , следует, что гидратационные изменения свойств воды вблизи атомных групп любой природы сосредоточены главным образом в первой гидратной сфере, и, возможно, частично захватывают вторую. Иначе говоря, гидратационные возмущения структуры воды около молекул растворенного вещества локальны. [c.50]

    Биополимеры. Существенная, при рассмотрении проблемы гидратации, особенность биополимеров состоит в наличии больщой и сложной по химическому составу молекулярной поверхности. Возникает вопрос не может ли такая поверхность в отличие от малых молекул оказывать на воду усиленное воздействие вследствие кооперативных эффектов Один из путей решения вопроса состоит в анализе аддитивности термодинамических гидратационных эффектов по атомному составу гидратируемой поверхности. Кооперативность проявилась бы в усилении гидратационного эффекта по сравнению с суммой вкладов поверхностных атомных групп, который подсчитывали на основании анализа низкомолекулярных соединений.  [c.58]

    Было высказано предположение, что происхождение структурных сил в фосфолипидных дисперсиях связано с работой по удалению молекул воды из области полярных головок [418]. Поэтому в биофизике эти силы получили название гидратационных . [c.162]

    Предложенная теория позволяет объяснить некоторые необычные свойства структурных сил, в частности, их. уменьшение при переходе липидного бислоя из жидкой фазы в твердую [419], несмотря на то, что при этом возрастает поверхностная плотность диполей. В процессе такого фазового перехода вода вытесняется из области полярных головок, что означает снижение степени гидратации, описываемой параметром L, и, следовательно, фактора 7, входящего в Ро [см. (9.42) ]. Аналогичным образом можно объяснить также снижение гидратационных сил у тех фосфолипидов, у которых площадь на одну молекулу So меньше [458]. [c.166]

    В основе большинства неорганических соединений лежит кремний Si, содержание которого от числа атомов всех элементов, слагающих земную кору, составляет 16,7%. Минералы, в состав которых входит кремний, в природных условиях обычно включают гидратационную воду и поэтому называются гидросиликатами. Все гидросиликатные минералы по их свойствам советскими Минералогами делятся на три группы глиноземистые, железистые и магнезиальные. [c.5]

    В формировании активного центра принимают участие также молекулы воды, входящие в гидратационные слои, а в ряде случаев ионы металлов, связанные с белком, и органические- кофакторы. Определенную жесткость такой конструкции придают а-спирали, р-структуры и дисульфидные мостики. [c.19]

    Гидратационным называют твердение, происходящее в результате реакций между вяжущим веществом и водой. [c.171]

    Для упрощения гидратационную воду обычно в уравнение реакции не включают и оно записывается в биде [c.185]

    Гидратационная активность — способность вещества твердеть при взаимодействии с водой с образованием камневидного тела. [c.138]

    Уравнение (А) для упрощения часто записывают без гидратационной воды  [c.228]

    При сближении на достаточно малые расстояния ионы под влиянием сил взаимодействия будут двигаться один относительно другого по замкнутым орбитам. Взаимная деформация ионов при этом не происходит и ионы удерживают гидратационную воду. Таким образом, ионная ассоциация является продуктом соединения гидратированных или сольватированных ионов. [c.117]

    Важные исследования в области получения координационных полимеров выполнены академиком В. И. Спи-цыным. В частности, им получены аквополисоединения, содержащие вольфрам. В водных растворах солей некоторых металлов при определенных концентрациях и pH образуются макромолекулы, построенные из ионов металлов, соединенных гидроксильными мостиками. Синтез микромолекул происходит следующим образом. При )астворении в воде соли этих металлов диссоциируют. 4оны металла сначала гидратируются молекулами воды, а затем гидратированные ионы реагируют с водой. При этом вода гидратационной оболочки теряет протоны (ионы водорода) и превращается в гидроксильные группы. Такой процесс может продолжаться до полной замены молекул воды гидратационной оболочки гидроксильными группами, связанными с металлом [c.98]


    В чистой воде, как указывалось выше, каждая молекула окружена четырьмя другими молекулами две из них обращены к ней своими положительными полюсами, а две другие — отрицательными. С появлением ионов ситуация меняется. Вокруг катиона все молекулы воды оказываются ориентированы отрицательными полюсами внутрь, тогда как у молекул, окружающих анион, внутрь всегда направлены положительные полюса (фиг. 3). Вследствие этого, если даже размеры иона таковы, что заи имаемое им пространство не больше пространства, обычно занимаемого молекулой воды, гидратационная вода по своим свойствам все же отличается от окружающей воды иными словами, в присутствии ионов нормальная структура воды нарушается. Еще сильнее она нарушается, если ион по размерам отличается от молекулы воды вообще говоря, чем крупнее ион, тем это нарушение сильнее. [c.15]

    Наряду с водою гидратационной и водою иммобильной различают еще воду свободную. Жидкости организма плазма крови, лимфа, спинномозговая жидкость, пищеварительные соки, моча содержат свободную воду. Свободная вода содержится и в межклеточных пространствах тканей (межклеточная вода), но количество ее настолько невелико, что она не вытекает ири разрезе ткани вода удерживается между клетками силами капиллярности. Количество межклеточной воды значительно возрастает при патолсгических условиях, особенно, при болезнях почек, когда почки оказываются неспособными удалять избыток воды из организма. В этих случаях веда накапливается в подкожной клетчатке, в мышцах и в иных органах, что вызывает явление, именуемое отеком. Накопление свободной воды в организме (отеки) имеет также место при глубоких нарушениях функции сердечно-сосудистой системы. Нри отеках в организме человека накопляется много литров свободной воды. Из отечной мышцы вода вытекает при погружении в нее тонкой металлической трубки. Отечные органы теряют свою эластичность, становятся мягкими, тестообразными. При надавливании пальцами иа отечную кожу остается углубление, которое медленно расходится. [c.204]

    Выводы термодинамического анализа подтверждаются данными ЯМР. Например, коэффициент самодиффузии адсорбированной воды в двухслойном гидрате Ма-вермикулита (0 я=10 м / ) [86] почти на порядок ниже, чем в жидкой воде см /с). Тем не менее время жизни протонов (т) в гидратационной оболочке обменных катионов короче, чем в жидкой воде. Это указывает на более высокую степень диссоциации (более выраженную кислотность) молекул воды, адсорбированной слоистыми силикатами, по сравнению с объемной водой. К сожалению, из-за неточностей в интерпретации спектров ЯМР первые оценки кислотных характеристик межслоевой воды монтмориллонита в работах [99, 100] оказались сильно завышенными. По данным [99], степень диссоциации воды в однослойном гидрате На- и двухслойном Са-монтморил-лонита в 10 раз выше, чем в жидкой воде. Согласно [100], в однослойном гидрате На-фтормонтмориллонита около 60% межслоевой воды существует в виде ионов НаО+ и ОН . [c.38]

    Однако в расчетах не учитываются различия в состоянии аминокислотных остатков, экспонированных в растворитель (т. е. гидратированных) и погруженных внутрь молекулы. Указанная точность совпадения при столь упрощенной схеме расчета является, на наш взгляд, в некотором смысле случайной. Совпадение в значительной мере является результатом компенсации двух противоположных гидратационных эффектов увеличения объема воды около неполярных атомных групп и уменьшения объема около полярных атомных групп, образующих водородную связь с молекулами воды. Следовательно, парциальный объем не может быть инструментом анализа аддитивности гидратационных термодинамичесих эффектов биополимеров. [c.58]

    Повышение коэффициен1а ак-гивности растворенных соединений с многовалентными ионами (заряд катиона или аниона более 2) предопределяется гидратационным процессом, приводящим к связыванию большого числа молекул воды. Так проявляется четвертый тип взаимодействий, которому отвечает кривая 4. Согласно [37, 172] значения коэффициентов активности такого вида соединений в насыщенных растворах могут достигать 1500—1600. Это, конечно, некоторые кажущиеся значения, обусловленные формальным решением уравнения Гиббса—Дюгема—Маргулиса  [c.76]

    Наличие дополнительного воздействия на воду со стороны двойной спирали, по сравнению с суммой воздействий отдельных атомных групп, должно давать положительные значения бЛад [149]. Если при образовании спирали изменение гидратации определяется лишь уменьшением доступности для воды атомных групп полинуклеотида, то бЛад должна быть отрицательна. Для всех исследованных спиральных структур, существенно различающихся между собой, бЛад<0 (см. рис. 3.13). По абсолютной величине значения бЛад вполне соответствуют тем, которые следует ожидать, если все гидратационные изменения при образовании спирали обусловлены только уменьшением доступности для воды атомных групп полинуклеотида [149]. Поэтому в случае нуклеиновых кислот имеющиеся экспериментальные данные свидетельствуют об отсутствии значительного дополнительного воздействия на воду со стороны регулярных спиральных структур, охватывающих значительные объемы вокруг макромолекулы. [c.62]

    Аппарат в виде колонны с расширением в верхней части, которое служит для улавливания брызг и вместилищем для образующейся пены, изготовляется из ферросилиция или из нержавеющей стали. Каждая полка барботажной гидратационной колонны по степени перемешивания газа и жидкости ближе к режиму смешения, чем к режиму вытеснения. Однако вследствие значительного количества полок процесс можно рассчитывать по модели вытеснения при противоточном движении фаз. Температура в гидрататоре при помощи острого пара поддерживается в пределах 90— 100°С. Газы, выходящие из верхней части гидрататора и содержащие ацетальдегид, непрореагировавший ацетилен, водяные парР . и другие примеси, поступают в холодильники. В первом конденсируются пары воды, возвращаемые в гидрататор, а во втором — ацетальдегид и вода, направляемые в сборник. Нескондеисировав-шиеся газы подаются в абсорбер, где альде[ид извлекается водой, охлажденной до 10°С, а пепрореагировавший ацетилен возвращается снова в процесс. При этом около 10% газа непрерывно отбирается с целью удаления азота и диоксида углерода, чем и предотвращается их чрезмерное накопление в циркулирующем газе. Ацетальдегид далее подвергается ректификации. Выходящая из гидрататора катализаторная жидкость направляется в отстойник (для улавливания ртути) и затем на регенерацию. Катализатор-иая жидкость содержит примерно 200 г/л серной кислоты, 0,5— [c.183]

    Поэтому состав поверхностных слоев онределяется, по-видимому, ближнедействующими поверхностными силами. Они, однако, не должны прямо влиять на устойчивость золей или эмульсий против коагуляции, так как, если частицы приблизятся на расстояние нескольких молекулярных диаметров, вандерваальсовы силы притяжения станут такими большими, что частицы останутся соединенными независимо от того, слипнутся они в действительности или коалесцируют. Обратное явление наблюдается для самопроизвольно диспергируемых коллоидов, например, глобулярных протеинов для этих веществ константа Гамакера (см. стр. 93) очень близка к константе воды, так что даже тонкий гидратационный слой достаточен, чтобы удержать молекулы на расстоянии, где энергия притяжения Ван-дер-Ваальса мала по сравненпю с тепловой энергией. [c.84]

    При изготовлении глинопорошков на заводах глина сушится в барабанах при средней температуре 80-90°С, что создает благоприятные условия для адсорбции органических молекул смазки в связи с частичным удалением гидратационной воды и повышением адсорбционной активности поверхности глинистых частиц. При пропитке сухого глинопорошка углеводородной жидкостью наиболее активные ее компоненты адсорбируются как на наружных поверхностях, так и в межпакетном пространстве глинистых частиц, увеличивая межплоско-стные расстояния в 2—3 раза и уменьшая прочность частиц на сдвиг. [c.49]

    Вследствие того, что вода в этой реакции не поглощается, как при гидратационном твердении, а выделяется и образующийся минерал ксонотлит имеет сравнительно небольшой удельный объем (3,7-10 м кг), в процессе затвердевания относительная пористость не уменьшается, а увеличивается. Однако средний радиус пор сокращается, так как образующийся ксонотлит имеет значительно более высокую дисперсность, чем исходные вещества. [c.144]

    Гидратационные равновесия являются результатом обменного взаимодействия лигандов комплекса с молекулами воды. В более общем случае неводных растворителей они получили название соль-ватационных равновесий. [c.107]

    В области вяжущих веществ в настоящее время предметом исследований является углубленное изучение механизма гидратацион-ного твердения. При этом наряду с другими методами эффективным является метод ИК спектроскопии. С помощью этого метода возможно одновременное определение несвязанной воды (по деформационным колебаниям при 1629 см ), а также свободных и ассоциированных групп ОН (по валентным колебаниям при 3650 см ). [c.53]

    Прямые доказательства существования иона Н3О+ получены при исследовании моногидратов серной, азотной, галогеноводородных и хлорной кислот методом протонного ядерного магнитного резонанса и рентгеноструктурным методом, а также при исследовании кислых растворов методами ИК-спектроскопии и измерения молярной рефракции. Ион Н3О+ представляет собой сильно сплюснутую пирамиду, в вершине которой расположен атом О углы при вершине равны 115°, длина связи О—Н составляет 0,102 нм, а расстояние Н—Н 0,172 нм. Ион Н3О+ окружен гидратной оболочкой, причем в первичной гидратационной сфере содержится, по-видимому, 3—4 молекулы воды. Чаще всего комплексу из Н3О+ и молекул воды приписывают формулу Н9О4+. Подвижность такого кластера вряд ли может превысить подвижности гидратированных ионов К+ и С1-. Поэтому для объяснения высокой подвижности ионов водорода предполагают непосредственный перескок протона от частицы Н3О+ к ориентированной соответствующим образом соседней молекуле воды  [c.84]

    Жесткие доноры и акцепторы, обладая высокими электро-статическнм ) характеристиками, упорядочивают диполи воды в гидратационные структуры. При образовании комплекса эти структуры разрушаются и энтропия системы возрастает. Этот эффект не компенсируется уменьшением AS°, связанным с ассоциацией между М и L. Значения Л5 >0 благоприятствуют комплек сообразованию. Устойчивость большинства электростатических комплексов в водных растворах обусловлена энтропийным фактором. Такие комплексы могут быть устойчивы, несмотря на эндо термичность реакции их образования. [c.348]

    После получения сведений о ходе гидратационного процесса в системе цемент — палыгорскит — вода и сопоставления их с теорией, объясняющей различную коррозионную стойкость цементов с отличным друг от друга фазовым составом и степенью кристалличности гидратов, выдвинутую в работе Калоусека и Бентона [319], можно в какой-то степени объяснить неоспоримые преимущества применения глино-цементных смесей в условиях сульфатных вод и их несколько лучшую по сравнению с исходным цементом устойчивость к хлорнатриевой агрессии. [c.157]


Смотреть страницы где упоминается термин Вода гидратационная: [c.67]    [c.345]    [c.61]    [c.334]    [c.121]    [c.184]    [c.227]    [c.401]    [c.145]    [c.239]    [c.199]   
Физическая и коллоидная химия (1957) -- [ c.292 ]

Химия и биология белков (1953) -- [ c.54 , c.59 , c.65 , c.100 , c.118 ]

Физическая и коллоидная химия (1964) -- [ c.226 ]




ПОИСК





Смотрите так же термины и статьи:

Вода гидратационная диэлектрическая константа

Вода гидратационная константа диссоциации

Вода гидратационная свободная

Вода гидратационная связанная

Гидратационная вода ионита

Определение гидратационной воды в органических соединениях

Определение свободной воды или гидратационной воды в инертных соединениях (общий метод)

Химическое связывание воды при гидратационном твердении извести



© 2025 chem21.info Реклама на сайте