Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рибосомы аминокислоты, сборка

    В настоящее время хорошо известны и детально изучены процессы активации и транспортирования активированных аминокислот к месту сборки — в рибосомы. [c.484]

    Исходя из этих фактов (а также из характера генетической регуляции синтеза ферментов, о чем пойдет речь в гл. XX), Жакоб и Моно в 1961 i. высказали предположение, что гипотеза один ген — одна рибосома — один белок неверна и что рибосомы отнюдь не наделены от природы способностью к синтезу определенных полипептидных цепей. Они считали, что рибосомная РНК не может служить непосредственной матрицей для упорядоченной сборки аминокислот, и высказали предположение, что нуклеотидная последовательность каждого гена транскрибируется в соответствующую информационную (матричную) РНК. [c.391]


    Образование функционирующих белков из линейных полимеров. Белок обладает биологической активностью лишь в том случае, если он имеет правильную трехмерную структуру. Синтез белков основан на информации, содержащейся в линейной, т.е. одномерной кодирующей последовательности ДНК. В соответствии с этой информацией рибосомы осуществляют сборку линейной, одномерной, последовательности аминокислот. Учитывая эти факты, объясните, каким образом в клетках могут формироваться биологически активные белки, обладающие специфической трехмерной структурой. Приведите какие-ни-будь экспериментальные данные, подтверждающие ваши объяснения. [c.223]

    Рядом с этим кодоном свое место занимает другая т-РНК с соответствующим антикодоном. Между обеими аминокислотами образуется пептидная связь. Затем и-РНК перемещается в полисоме на участок одного кодона и за второй аминокислотой на новый кодон поступает соответствующая третья аминокислота и т. д. Так все кодоны матрицы протягиваются через участок сборки аминокислот в рибосоме, в результате образуется соответствующая матрице полипептидная цепь. [c.45]

    В белковой молекуле, осуществляется на поверхности мельчайших частиц цитоплазмы — рибосом. Для того чтобы эта завершающая стадия могла осуществиться, на рибосоме должна находиться соответствующая матрица, обеспечивающая сборку нужного белка, а также к рибосоме должны постоянно доставляться необходимые аминокислоты. Каждая из стадий сложного процесса биосинтеза белка катализируется определенным ферментом. [c.456]

    На ДНК как на матрице может синтезироваться не только новая ДНК, но и РНК — процесс, направляемый ДНК-зависимой PH К-полимеразой. Репликация РНК на ДНК протекает по тем же законам, что и репликация ДНК, с той лишь разницей, что в молекуле РНК место Т занимает У. Синтез информационной РНК (мРНК, матричная РНК), последовательность оснований в которой комплементарна последовательности оснований в исходной молекуле ДНК, представляет собой первый этап в процессе биосинтеза белка. Этот этап называют транскрипцией. Процесс сборки примерно двадцати различных аминокислот в определенной последовательности при синтезе белковой молекулы называется трансляцией, так как в этом случае последовательность оснований мРНК транслируется в соответствующую последовательность аминокислот. Процесс трансляции осуществляется на рибосомах. Это рибонуклеопро-теидные частицы с молекулярной массой 2,7 млн., состоящие из двух субъединиц с молекулярной массой 0,9 и 1,8 млн. Несколько рибосом могут [c.69]


    Как и на промышленном предприятии, в клетке установлен строгий порядок. В ней имеются различные цехи , производящие необходимые полупродукты и продукты из поступающего сырья. Для этого клетка разделена полупроницаемыми перегородками на множество мельчайших отсеков. Каждый из химических процессов в клетке протекает в специально предназначенном для него отсеке и катализируется специфическим ферментом. Так, например, описанные выше окислительные реакции, в результате которых клетка получает необходимую энергию, происходят в митохондриях (небольших частицах цитоплазмы). Биосинтез белка не является в этом отношении исключением. Подготовительные стадии сложного процесса биосинтеза происходят в разных участках клетки, а завершающая стадия сборки аминокислот на специальной матрице (шаблоне), обеспечивающей нужную их последовательность в белковой молекуле, осуществляется на поверхности мельчайших частиц цитоплазмы — рибосом. Для того чтобы эта завершающая стадия могла осуществиться, на рибосоме должна находиться соответствующая матрица, обеспечивающая сборку нужного белка, а также к рибосоме должны постоянно доставляться необходимые аминокислоты. Каждая из стадий сложного процесса биосинтеза белка катализируется определенным ферментом. [c.378]

    Все реакции типа (ХХ.З) протекают в цитоплазме. Ранее мы приводили соображения, из которых следует, что синтез белка должен осуществляться в рибосомах при участии активированных аминокислот и молекул-адаптеров. Подобной молекулой-адаптером, в состав которой входит активированная аминокислота, служит аминоацил-РНК. Необходимым этапом синтеза является перенос этого комплекса в рибосому и сборка белковой молекулы на РНК-матрице. Этот процесс катализируется особым ферментом переноса, который, по-видимому, обладает малой специфичностью. Фермент переноса, выделенный из бактерий, катализирует перенос аминоацил-РНК, полученной из любого источника, в рибосому бактерии (но не в рибосому животного). Аналогично фермент из кролика катализирует перенос аминоацил-РНК бактерии в рибосомы кролика. Таким путем можно, в частности, осуществить синтез гемоглобина в рибосомах, выделенных из ретикулоцитов кролика. Складывается впечатление, что ферменты переноса до некоторой степени специфичны по отношению к типу рибосом, но значительно менее специфичны к промежуточным комплексам. [c.373]

Рис. 25. Сборка пептидов из аминокислот, происходящая на рибосомах при помощи Рис. 25. <a href="/info/1398792">Сборка пептидов</a> из аминокислот, происходящая на рибосомах при помощи
    Рибосомы состоят, как правило, из двух частиц — субъединиц, отличающихся по скоростям седиментации (зеётеп-1ит — латинское — оседание), их называют 305- и 505- субъ-единицами. Рибосомы являются своего рода конвейерами, на которых происходит сборка белка из соответствующих деталей — аминокислот. Однако в рибосомы должны поступать аминокислоты не как таковые, а предварительно подготовленные к сборка. Прежде всего аминокислоты активируются, взаимодействуя с аденозинтрифосфатом и образуя амино-ациладенилаты, общая формула которых приведена ниже. [c.132]

    Рибосомы — своеобразные фабрики белка. В них, как на кон--вейере, происходит сборка из аминокислот белковых молекул. [c.24]

    При обсуждении структуры полипептидов в гл. IV было показано, что на одном конце цепи имеется свободная -карбоксильная группа, а па другом — свободная а-аминогруппа. Это обусловлено тем, что в отличие от остальных аминокислот, находящихся внутри цепи и соединенных со своими соседями двумя пептидными связями, каждая из карбокси- и аминоконцевых аминокислот присоединяется к своему единственному соседу только одной пептидной связью. Проще всего предположить, что при сборке аминокислот в полипептидную цепь ее рост происходит с одного конца путем последовательного присоединения аминокислот одня за другой. Когда, наконец, соединится необходимое число аминокислот, рост цепи прекращается терминация синтеза) и завершенная полипептидная цепь освобождается из рибосомы, с тем чтобы выполнить ту фу нкцно-нальную роль в жизни клетки, к которой она предназначена. До пустим теперь, что в момент времени /х мы добавим к клеточной культуре меченные Н аминокислоты, а затем через короткие промежутки в м оменты i , tз и т. д. определим в завершенных полипептидных цепях, уже отделившихся от рибосом, появление этих аминокислот. Тогда, если справедлив постулированный механизм роста цепи, получатся результаты, схематически изображенные на фиг. 201. [c.406]

    По имеющимся данным, рибосома состоит из двух неравных субъединиц 605 и 405. Основные химические компоненты рибосом— рибосомальная РНК и белок. По современным представлениям, эти органеллы осуществляют сборку специфических белков из аминокислот. От их количества зависит общая интенсивность биосинтеза белка. Обычно в синтезе белковой молекулы участвуют ассоциации из нескольких рибосом, получившие название полирибосомы. В цитоплазме рибосомы встречаются на мембранах эндоплазматической сети и в свободном состоянии. Сборка рибосом происходит в ядрышке, откуда они мигрируют, по-видимому, через ядерные поры в цитоплазму. [c.123]


    Прикрепившись на конце нити -РНК, рибосома, к которой г-РНК все время доставляют активированные аминокислоты, начинает синтез полипептидной цепи. Передвигаясь в одном определенном направлении, она считывает по три нуклеотида и добавляет к растущей полипептидной цепи по одной аминокислоте. Достигнув другого конца цепочки и-РНК, рибосома отделяется, и в раствор выходит новая синтезированная молекула белка. Для понимания процесса трансляции и механизма синтеза белков на полисомах большое значение имели работы А. С. Спирина. На рисунке 62 видно, что иа полисоме одновременно синтезируются четыре полипептидные цепи одного и того же белка. Разница между ними лишь в количестве собранных аминокислот. Сборка белковых молекул на полисоме напоминает работу конвейерной ленты. Молекулярная скорость трансляции и транскрипции огромна — около 1000 триплетов и-РНК в одну минуту па одну рибосому, а всего в мггауту, например, клетка Е. oli включает около 15-10 аминокислот в белки. Некоторые локусы транскрибируются за клеточный цикл более 1000 раз. [c.156]

    Чтобы понять всю сложность исследований, проводимых учеными-биохимиками при изучении структурно-функциональной организации живых объектов, в качестве иллюстрации приведем лищь один пример, поясняющий строение и основы жизнедеятельности простейшей бактериальной клетки Es heri hia соН (в дальнейшем сокращенно — Е. соН). Клетка Е. соИ (рис. В.З) имеет весьма скромные размеры длина — 3, а диаметр — 1 мкм, ее масса приблизительно 6 10 г, две трети которой составляет вода. Остальное вещество клетки образовано белками, свободными аминокислотами, нуклеиновыми кислотами, жирами и углеводами. Клетка состоит из 40 млн больших и средних молекул, участвующих вместе с малыми молекулами в 2—5 тыс. типов химических процессов, многие из которых протекают в 20 — 30 стадий. В клетке содержится около 10 тыс. рибосом, на которых непрерывно синтезируется несколько тысяч типов белков, причем каждая рибосома собирает в среднем одну молекулу белка за 1 с. Сборка представляет собой многостадийную операцию, во время которой несколько сотен аминокислот сшиваются в определенном порядке за счет образования пептидных связей, и включает стадии подбора аминокислот, расстановки их по местам, удаления молекулы воды в процессе образования пептидных связей. Поэтому одновременно в клетке содержится около миллиарда аминокислот, из которых только 1 % входит в состав белков, а остальные находятся в работе. Основная информация о химической организации клетки записана в ДНК буквами такой записи являются триплеты азотистых оснований. В рассматриваемой нами клетке молекулы ДНК содержат 2—5 млн триплетов, т. е. до 15 млн оснаваний, расположенных в строго определенном порядке (для сравнения одна молекула ДНК клетки человека содержит приблизительно 3 млрд оснований). [c.28]

    Такие копии генов служат матрицами синтеза белка. На них в рибосомах и происходит сборка белковых молекул. При этом очередность посадки аминокислот в строющийся полипептид в каждом случае определяется последовательностью триплетов нуклеотидов или кодонов в м-РНК. Узнавание кодонов осуществляется молекулами т-РНК, переносящими к рибосомам активированные аминокислоты [7], [9], [20]. [c.14]

    О последней стадии синтеза белка — сборке белковой молекулы на рибосомах — предстоит еще выяснить очень многое. Информационная РНК, по-видимому, стимулирует агрегацию 70 5-рибосом. Эксперименты с введением меченых аминокислот в ретикулоциты кролика показывают, что для синтеза полипептидной цепи гемоглобина, происходящего последовательно в линейном порядке, начиная с аминного конца цепи, требуется 1—2 мин. Многие детали этой и других стадий синтеза белка еще неизвестны. Исследования этой сложной проблемы развиваются очень интенсивно, и мы привели здесь лищь беглый обзор полученных к настоящему времени результатов. [c.375]

    Изучение нуклеиновых кислот хлоропластов имеет большое значение в связи с выяснением вопроса о степени их автономности в клетках. Известно, что в ядерной ДНК содержится информация, определяющая качество синтезируемых белков, в том числе ферментов, а с помощью нескольких видов РНК осуществляются различные этапы белкового синтеза. Информационная РНК, образуясь на ДНК, считывает с нее информацию и переносит последнюю к месту синтеза белка — рибосоме. Информационная РНК и рибосома образуют единый белок-синтезирующий агрегат. Взаимодействие между ними осуществляется за счет специфической рибосомаль-ной РНК. Третий вид РНК — транспортная — участвует в отыскании, доставке аминокислот и сборке из них белка на информационной РНК, мигрировавшей от места синтеза на ДНК к рибосомам. Число видов транспортной РНК соответствует числу видов аминокислот Во время синтеза белка одна молекула информационной РНК может взаимодействовать с несколькими рибосомами, образуя так называемую полирибосому или полисому. [c.64]

    Макролидный антибиотик эритромицин действует, вероятно, очень сходно с хлорамфениколом, но 09 связывается с 505-субъединицей рибосомы значительно прочнее (он может вытеснять хлорамфеникол) Стрептомицин (и. по-видимому, некоторые иные антибиотики) присоединяется к рибосоме я нарушает процесс считывания информации с молекулы информационной РНК при этом возникают и т мaтичe киe ошибки и вместо одних (нужных) аминокислот начинают включаться другие аминокислоты получаются белки с совершенно Иными свойствами и микроорганизм оказывается нежизнеспособным. Пуромицин (антибиотик, содержащий остаток 6-диметиламинопурина и обладающий антибактериальным и некоторым противоопухолевым действием) специфически подавляет саму стадию сборки аминокислот, стадию образования пептидов. Он отрывает от рибосом незаконченные пептидные цепи, вытесняя концевые транспортные РНК. [c.133]

    Принщш комплементарности лежит в основе таких важнейших процессов, как репликация (удвоение молекулы ДНК в процессе клеточного деления), транскрипция (передача генетической информации с молекулы ДНК информационной РНК в процессе синтеза белков) и трансляция (сборка из аминокислот белковой молекулы на рибосомах). [c.16]

    Исходя из гипотезы адаптора, процесс сборки аминокислот можно представить следующим образом перед включением в растущую цепь каждая молекула аминокислот снабжается нуклеотидным адаптором, содержащим нуклеотидный триплет, или антикодон, комплементарный по своей нуклеотидной последовательности тому триплету, или кодону, которы-й кодирует соответствующую аминокислоту в матричной РНК. Затем комплексы аминокислот с нуклеотидами диффундируют к рибосоме, где попадают на положенные им места на матрице за счет образования водородных связей между комплементарными пуринами и пиримидинами молекул адаптора и мРНК. После того как аминокислотные остатки выстроились таким образом в правильном порядке вдоль матричной РНК, они соединяются друг с другом пептидными связями с помощью такой химической перестройки, при которой одновременно происходит освобождение аминокислоты из связи с нуклеотидным адаптором и соединение с растущей полипептидной цепью. [c.415]

    Механизм трансляции. Как и другие матричные процессы, трансляция протекает в три этапа (инициация, элонгация и терминация), осуществляемые на рибосомах, состоящих из рРНК и белков. На первой стадии трансляции происходят активация аминокислот и присоединение их к соответствующим тРНК, а затем протекает сборка полипептидной цепи (что иногда называют собственно трансляцией). [c.367]

    Указанное свойство лидерных пептидов должно приводить к замедлению их сборки при дефиците соответствующей аминокислоты. Пред1К)лагается, что в этом случае торможение движения рибосомы по растущей цепи мРНК предотвращает образование такой вторичной структуры мРИК, которая способствовала бы диссоциации РНКП от матрицы ДНК- [c.36]

    ДНК не может непосредственно участвовать в синтезе белков. Она является только местом, где записана информация о них, подобно жесткому диску компьютера. Синтез белков происходит в специализированных рибонуклеопротеидных частицах (то есть состоящих из рибонуклеиновой кислоты и белка), называемых рибосомами. Для того чтобы доставить информацию из жесткого диска компьютера (ядра клетки с хромосомами) к месту сборки белков, используется дискета , в качестве которой выступает информационная, или матричная, рибонуклеиновая кислота (мРНК). РНК по своей природе очень близка к ДНК. Это тоже полимер, но имеющий только одну нить, и нуклеотиды вместо сахара дезоксирибозы содержат рибозу. Нуклеотиды, составляющие молекулу РНК, аналогичны содержащимся в молекулах ДНК А, Г, Ц, а также У — урациловый нуклеотид, который близок по структуре Т — тиминовому нуклеотиду ДНК и который так же, как и Т, комплементарен А. Списывание информации с жесткого диска (ДНК) на дискету происходит путем образования молекулы мРНК, комплементарной одной из нитей ДНК. Таким образом, последовательность нуклеотидов в ней полностью идентична таковой другой нити ДНК (рис. 6). Разумеется, этой информации вполне достаточно для синтеза белка со строго определенной последовательностью аминокислот в соответствии с [c.16]

    РНК рибонуклеиновая кислота. Ее молекула по строению аналогична ДНК. В отличие от последней она состоит из одной нити, в которой чередуются нуклеотиды аденин, гуанин, цитозин и урацил (вместо тимина). В качестве сахара в РНК входит рибоза. В функции мРНК (матричной, информационной РНК) входит передача генетической информации от ДНК к месту сборки - белков — рибосомам. Транспортные РНК (тРНК) распознают и доставляют к рибосомам молекулы определенных аминокислот. У некоторых вирусов генетическая информация записана не в ДНК, а в РНК. [c.114]

    Матричный механизм биосинтеза белков. Общая схема матричного биосинтеза белковых тел представлена на рис. 93. Она складывается из трех подготовительных процессов—переноса вещества, энергии и информации в рибосому, и главного центрального процесса—сборки полипептидных цепей в рибосоме. Один из элементов указанной схемы (правая верхняя часть рисунка)—транскрипция (переписывание) информации о порядке расположения аминокислотных остатков в молекуле синтезируемого белка—рассмотрен ранее. Известно, что информация об этом закодирована в генетическом аппарате клетки последовательностью дезоксирибонуклеотидных остатков в молекуле ДНК. Будучи преобразована (транскрибирована) в последовательность рибонуклеотидных остатков в информативной части молекулы мРНК, синтезированной на ДНК в качестве матрицы, эта информация о первичной структуре белка поступает в рибосому. Здесь она переводится (транслируется) с полинуклеотидной последовательности в аминокислотную последовательность новообразуемого в рибосомальном аппарате белка. Два других процесса—перенос вещества (18 протеиногенных аминокислот и двух амидов) и. перенос энергии, необходимой для синтеза пептидных связей (левая верхняя часть рисунка), равно как и наиболее сложный процесс—сборка полипептидной цепи в активной, транслирующей рибосоме (центральная часть рисунка), нуждаются в детальной характеристике. Она дана ниже. [c.280]


Смотреть страницы где упоминается термин Рибосомы аминокислоты, сборка: [c.36]    [c.96]    [c.378]    [c.390]    [c.412]    [c.419]    [c.426]    [c.427]    [c.269]    [c.276]    [c.86]    [c.43]    [c.19]    [c.243]    [c.243]    [c.34]    [c.290]    [c.269]    [c.276]    [c.43]   
Молекулярная генетика (1974) -- [ c.388 , c.389 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислоты сборка

Рибосомы

Сборка



© 2025 chem21.info Реклама на сайте