Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хромосома хромосомы перенос

    Конъюгация и трансформация — не единственные способы передачи генетического материала. Гены могут переноситься из одной бактериальной клетки в другую с помощью умеренных фагов. Такой перенос бактериальных генов получил название транс-дукции. Трансдукция оказывается возможной, если в процессе размножения фага одна из частиц случайно захватит фрагмент бактериальной хромосомы, как правило, содержащий очень небольшое число генов. Когда такая фаговая частица заражает бактерию-реципиент, бактериальная ДНК проникает в клетку таким же путем, как фаговая. Между трансдуцированной бактериальной ДНК и гомологичным участком бактериальной хромосомы может произойти обмен, и как следствие его возникают рекомбинанты, несущие небольшую часть генетического материала клетки-донора (рис. 40, А). Передача признаков с помощью фагов показана для бактерий, принадлежащих к разным родам. [c.152]


    Буквами обозначены разные гены, обладающие определенной биохимической активностью или передающие разные типы устойчивости. О —тот конец хромосомы, который идет впереди при конъюгации Л —положение точки, в которой обычно происходит разрыв хромосомы. Переноситься могут только гены, лежащие между О а R. Ряд В показывает время (в минутах), которое требуется разным генам для перемещения в клетку-реципиент. Ряд Л —процент рекомбинантов в потомстве по пяти из этих генов. Этот процент уменьщается от 90 до 15, так как гены, расположенные ближе к точке О, будут чаще попадать в клетку-реципиент, чем гены, расположенные далеко от нее. [c.243]

    F-дукция является особым типом переноса генетического вещества от клетки к клетке. Это процесс промежуточный между конъюгацией, в которой участвует клеточная хромосома, и транс-дукцией, при которой маленький сегмент хромосомы переносится бактериофагом. Что особенно любопытно, это малая видовая специфичность процесса F-дукции. [c.328]

    Если С Л -фрагмент из одной хромосомы переносят вместо центромеры в другую хромосому, то не обнаруживают никаких изменений. Этот результат говорит о взаимозаменяемости центромер. Они просто используются для прикрепления хромосомы к веретену и не играют никакой роли в том, чтобы отличить одну хромосому от другой. [c.353]

    Перенос хромосомы донора происходит ориентированно, т. е. гены переносятся в той последовательности, в которой они расположены на хромосоме. Начало переноса связано с местом интеграции конъюгативной плазмиды в хромосому донорного штамма и ее ориентацией. [c.186]

    Обычно хромосома Е. соИ имеет несколько /5-элементов, например 8 копий /5/, 5 копий /52 и т.д. Они перемещаются по хромосоме с частотой около 1 10 — 1 10 на клеточное деление. /5-элементы локализованы также в F-факторе Е. соИ два /53, один /52 и еще один элемент, обозначаемый у Именно по этим мигрирующим элементам и происходит рекомбинация, когда F-фактор интегрирует с хромосомой Е. соИ, образуя ///г-штаммы. На это указывают результаты изучения ДНК F -факторов (см. гл. 9), у которых участок ДНК бактериальной хромосомы, включенный в F -фак-тор, оказывается отделенным от ДНК F-фактора по обоим концам одной и той же последовательностью /5-элемента. /5-элементы F-фактора и такие же последовательности, разбросанные по бактериальной хромосоме, создают условия для образования Я/г-доноров с различными началами и направлениями переноса бактериальной хромосомы. [c.339]

    Транспозоны обладают рядом специфических свойств. Они могут вызывать в ДНК полярные мутации, делеции и инверсии. Они способны также включать или выключать соседние с ними гены, поскольку в транспозонах есть промоторы и терминаторы транскрипции. Два родственных транспозона, находящиеся на одной хромосоме, могут переносить фрагмент ДНК, который заключен между ними, в другую область той же хромосомы или вообще в другую хромосому. Одинаковые транспозоны играют также роль подвижных областей гомологии, между которыми может происходить генетическая рекомбинация. Благодаря этим свойствам транспозоны играют важную роль в регуляции активности генов и перестройке геномов. [c.38]


    Теоретически белки могли бы накапливаться в ядре двумя путями. 1). Они могли бы проникать в ядро за счет пассивной диффузии и задерживаться там благодаря связыванию с постоянными компонентами ядра, например с хромосомами. 2). Перенос белков в ядро мог бы осуществляться путем активного транспорта, и их накопление не зависело бы от сродства к компонентам ядра. Провести различие между пассивной диффузией и активным транспортом очень трудно, так как большинство, если не все белки в ядре прямо или опосредованно связаны с ядерными компонентами. Хотя часто утверждают, что физический размер ядерной поры (кажущийся диаметр 9 нм) благоприятствует активному транспорту, однако такую аргументацию нельзя считать удовлетворительной, поскольку форма молекул для большинства ядерных белков неизвестна. [c.105]

    Чрезвычайно важным является то обстоятельство, что интегрированная в хромосому конъюгативная плазмида (например, F-фак-тор Е.соН) не теряет способности инициировать конъюгацию клеток и перенос ДНК из донора в реципиент. При этом ДНК плазмиды, составляющая одно целое с хромосомной ДНК, затаскивает в реципиент хромосому бактерии-донора. Между ДНК донора и реципиента может происходить общая рекомбинация, что приводит к обмену гомологичными генами между клетками бактериальной популяции. Этот процесс — бактериальный аналог полового размножения. Наличие механизма обмена генами очень важно для эволюции бактерий, поскольку, как и в случае патового размножения эукариот, нарушает абсолютную сцепленность генов одной хромосомы и позволяет естественному отбору находить благоприятные комбинации уже присутствующих в популяции бактерий аллельных вариантов генов. [c.128]

    И бактериальные гены, а вслед за ними и гены фактора F переносятся в женскую клетку. Согласно существующим представлениям, из клетки-донора в клетку-реципиент переходит (возможно, через Р-ворсинку) лишь одна из цепей ДНК, обычно обозначаемая как плюс -цепь (рис. 15-2). В клетке-реципиенте синтезируется комплементарная ми-нус -цепь, в результате чего образуется двухцепочечная молекула ДНК, несущая гены из Hfr-клетки. Только в редких случаях плюс -цепь до-норной клетки переходит в женскую клетку полностью. Чаще всего цепь ДНК или сама ворсинка разрываются, и происходит перенос лишь части хромосомы. [c.191]

    РИС. 15-2. Интеграция фактора F с бактериальной хромосомой и перенос иекоторызе бактериальных генов в другую клетку. А. Включение фактора F в геном Е. соИ и перенос плюс -цепй ДНК в женскую клетку-реципиент. Б. Генетическая рекомбинаци между фрагментом перенесенной ДНК и геномом клетки-рецнпиента. [c.190]

    Еще одним типом генетической рекомбинации является трансдущия (рис. 30-12). Если бактериальная клетка заражена некоторыми ДНК-содержащи-ми фагами, то небольшая часть ее хромосомы может ковалентно присоединиться к фаговой ДНК, реплицироваться вместе с ней и таким образом встраиваться в ДНК дочерних фаговых частиц. Когда такие частицы заражают другую клетку, фаговая ДНК приносит в эту клетку участок хромосомы первой клетки. Трансдук-ция (что означает перенос )-это природный процесс, который в лабораторных условиях используется для картирования бактериальных хромосом. [c.975]

    В лизогенных клетках профаг прочно связан с хромосомой клетки-хозяина. При конъюгации клеток профаг вместе с хромосомой хозяина переносится из клетки-донора в клетку-реципиент. Генетические эксперименты показывают, что фаг лямбда присоединен к хромосоме хозяина в совершенно определенном месте (между галактозным опероном и биотиновым локусом). Вначале предполагали, что ДНК бактериофага только прикрепляется к хромосоме бактерии в этом участке. Однако в результате составления генетических карт фага, а также из опытов по рекомбинации стало ясно, что фаговая ДНК при лизогенизации не просто прикрепляется к бактериальной ДНК, а включается в нее. [c.150]

    ЭТОМ F-фактор ведет себя так, как если бы он первоначально составлял одно целое с хромосомой Е+-клетки, но обладал способностью отделяться вместе с небольшим участком хромосомы и переноситься в клетку-рециниент. Таким образом, этот фактор может суш,ествовать как в интегрированном, так и в полуавтономном состоянии. По предложению Жакоба, Вольмана и Моно подобные генетические элементы были названы эписомами. [c.482]

    Теперь можно рассмотреть последнюю стадию процесса конъюгации — образование рекомбинантной бактериальной хромосомы, которая содержит часть генома донора Hfr и часть генома родителя-реципиента Р. Такая рекомбинация явно происходит в реципиентной клетке Р , превращенной в мерозиготу, которая из-за спонтанного прерывания переноса хромосомы обычно содержит только часть генома донора Hfr в дополнение к собственной хромосоме. Следовательно, мерозигота формально эквивалентна реципиентной клетке при трансформации у бактерий, при которой клетка, как было показано в гл. VII, включает экзогенную молекулу ДНК из среды и в результате наряду со своей полной хромосомой несет также часть донорного генома. Следует, однако, заметить, что степень диплоидности значительно больше в конъюгационных мерозиготах, которые содержат часто четверть, иногда половину, а иногда и весь геном донора, в то время как в трансформированных реципиентных клетках включенная экзогенная молекула ДНК едва составляет более 1 % донорного генома. Но как при трансформации, так и при конъюгации различные участки экзогенной перенесенной молекулы донорной ДИК находят гомологичные участки с соответствующей последовательностью [c.240]


    Нативные молекулы ДНК очень велики и при экстракции из клеток обычно разрываются в результате физических или ферментативных воздействий. Мезелсон и Сталь в своих экспериментах по репликации ДНК Е. соН имели дело со сравнительно небольшими фрагментами ДНК, и полученные ими результаты относятся только к состоянию ДНК, предшествовавшему репликации и после нее. Полная репликация хромосомы Е. соН впервые наблюдалась Джоном Кейрнсом. Он разработал метод очень мягкого разрушения клеток Е. соИ. В результате Кейрнсу удалось вьщелить интактные хромосомы Е. соН и пометить их радиоактивным Н-тимидином. Меченые хромосомы аккуратно переносили из раствора на твердую поверхность, которая затем покрывалась в темноте фотографической эмульсией и в течение нескольких недель экспонировалась. В это время электроны, испускаемые радиоактивной ДНК, вызывали образование зерен серебра в фотоэмульсии вдоль молекул ДНК. Последующая обработка эмульсии дает радиоавтограф хромосомы, на котором цепочка зерен серебра отслеживает конформацию молекулы ДНК. Применение метода радиоавтографии привело прежде всего к установлению того факта, что ДНК Е. соН имеет кольцевую форму (рис. 4.22). Впоследствии было показано, что такую же форму имеет ДНК всех прокариотических организмов, а также вирусов и органелл эукариотических организмов. [c.120]

    Препарат хромосом человека, не содержащий примеси клеток, может быть получен при соответствующей обработке, вскрывающей плазматическую и ядерную мембраны клетки. В семидесятых годах были разработаны методы фракционирования и проточной микрофлуоримет-рии, позволяющие осуществлять сортировку хромосом на фракции, содержащие индивидуальные хромосомы человека высокой чистоты (рис. 18.13). Когда свободные хромосомы добавляют к культивируемым клеткам мыши, то эти клетки могут захватывать целые хромосомы в процессе эндоцитоза. Внутри реципиентной клетки захваченные хромосомы обычно деградируют, распадаясь на фрагменты. Если такие фрагменты содержат центромерные области, то они могут поддерживаться как единое целое. Фрагменты, лишенные центромеры, могут транслоцироваться на мышиные хромосомы. В том и другом случае определенные человеческие гены будут экспрессироваться в гибридных клетках (рис. 18.14). Встраивание фрагментов в хромосому мыши происходит с очень низкими частотами, от 10 " до 10 на клетку. Встраиваемые фрагменты могут быть как очень мелкими, не видимыми в световой микроскоп, так и достаточно крупными, включая плечи хромосом и даже целые хромосомы. Такой перенос генетического материала от донора, сопровождающийся встраиванием в хромосомы реципиента, называется трансформацией (как у бактерий) или трансфекцией. [c.304]

    Что же происходит с РНК и белковым компонентом дезагрегировавшего в процессе митоза ядрышка По-видимому, какая-то часть их распределяется по всем метафазным хромосомам и переносится в ядра дочерних клеток. В гелофазе митоза при деконденсации хромосом эти старые ядрышковые компоненты могут участвовать в построении новых ядрышек. [c.167]

    В многочисленных экспериментах показано, что, как и для других генетических эффектов (мутация, индукция профага), зависимость частоты рекомбинации от дозы ультрафиолетового света описывается куполообразной кривой с максимумом. Подобная зависимость Kogee всего отражает наложение двух одноударных процессов активацию хромосомы (F+) мужской клетки при включении в нее половой эписомы (интеграция) и предотвращение переноса активированной хромосомы. Ингибирование переноса хромосомы донора к акцептору является следствием либо прямых, либо косвенных разрывов полинуклеотидной цепи, возникающих при темновой репарации. Молекулярные механизмы активации хромосомы (F+), приводящей к увеличению частоты рекомбинаций, не выяснены. Предполагается, что этому способствуют однонитевые разрывы ДНК половой эписомы. Увеличение частоты рекомбинаций наблюдается только у штаммов с неинтегрированной половой эписомой. У остальных штаммов рекомбинация подавляется по одноударному механизму в результате торможения переноса ДНК. [c.312]

    Факторы фертшъности (Р-факторы) - включаются в, бактериальную хромосому, мобилизуют генетическую информацию хромосомы и переносят ее в другую клетку в результате конъюгации. [c.343]

    Для конъюгационного скрещивания культуры донора и реципиента смешивают и инкубируют совместно в питательном бульоне или на поверхности твердых агаризованных сред. В этих условиях клетки Hfr и Р соединяются между собой при помощи конъюгационного мостика, через который в реципиентную клетку начиная с сайта ori Т плазмиды поступает хромосома донора. При 37°С для переноса всей хромосомы требуется около 90 мин, однако в большинстве случаев клетки расходятся до того, как вся хромосомная ДНК успеет перейти. Основная часть фактора F обычно не передается, поскольку он располагается на дистальном конце хромосомы, который переносится крайне редко. Таким образом, при конъюгационных скрещиваниях, как правило, образуются мерозиготы, содержащие только часть генетического материала донора. Затем донорная ДНК спаривается с гомологичной областью хромосомы реципиента и происходит кроссинговер, ведущий к образованию рекомбинантных клеток (рис. И). [c.92]

    В генетически сходной ситуации хромосомного определения пола по типу XX—XV у дрозофилы выработался иной механизм компенсации дозы генов Х-хромосомы, которая различается у самцов и самок. Активность ферментов, кодируемых генами X-хромосомы, у них одинакова в пересчете на клетку или организм, но она в два раза выше у самцов в пересчете на одну Х-хромосому, чем у самок. При этом у дрозофилы Х-хромосома не инактивируется. Если ген из Х-хромосомы транслоцировать на аутосому, то эффект дозовой компенсации сохраняется. При переносе генов с аутосом на Х-хромосому аутосомные гены по типу компенсации дозы не регулируются. Следовательно, регулируется не активность всей Х-хромосомы, а активность каждого ее гена. [c.436]

    Для осаждения лизированных ядер суспензию центрифугируют 15 мин при 25 000 супернатант, содержащий вирусные хромосомы, переносят в другую пробирку. Полученный грубый препарат хромосом 5У40 можно хранить в течение нескольких дней во льду. Далее его можно очистить скоростным центрифугированием в 5—20%-ном градиенте сахарозы, как описано выше. [c.252]

    Хромосомные мутации, а именно транслокации, могут нарушать биохимическую функцию или уровень протоонкогенной активности из-за другого окружения протоонкогена. Примером может быть хронический миелоид-ный лейкоз, при котором можно обнаружить так называемую филадельфийскую хромосому. Участок длинного плеча хромосомы 22 транслоцирован на длинное плечо хромосомы 9, а совсем небольшой участок хромосомы 9 ре-ципрокно присоединён к хромосоме 22. В результате этой транслокации 1(9 22)(я34 1) клеточный онкоген с-аЫ с хромосомы 9 переносится в регион хромосомы 22 (ген Ьсг), что приводит к синтезу химерного продукта (с-аЫ и Ьсг), обладающего онкогенными свойствами [c.217]

    Различают два типа нуклеиновых кислот, а именно дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Первые находятся в ядрах клеток, другие — в хромосомах и цитоплазме клеток. Молекулы ДНК переносят наследственную информацию, которая закодирована в их структуре. Они способны репродуцироваться и служат матрицей при синтезах РНК. Рибонуклеиновые кислоты передают полученную от ДНК информацию, управляя синтезом тысяч различных белков, содержащихся в живых клетках. В настоящее время эти процессы детально исследованы на молекулярном уровне, и мы отсылаем интересующихся подробностями к современной биохимической литературе. [c.216]

    Частичный перенос хромосомы из мужской клетки приводит к тому, что Р -клетка становится частично диплоидной (мерозигота), т. е. содержащей двойной набор многих генов. В такой частично диплоидной клетке между двумя хромосомами происходит обмен генетической информацией (генетическая рекомбинация) (рис. 15-2). Химические реакции, лежащие в основе этого процесса, имеющего важное значение для всех организмов, размножающихся половым путем, мы рассмотрим в разд. Ж- В конечном счете рекомбинационный процесс приводит к тому, что дочерние клетки, образовавшиеся при последующем делении, содержат только одну хромосому с обычным числом генов. Однако некоторые гены попадают в эту хромосому от каждого из родительских штаммов. Таким образом, может случиться, что клетка Р мутантного штамма, неспособная расти на среде без определенных питательных добавок, получит ген из мужской клетки, который позволит ей расти на минимальной среде. Хотя число таких рекомбинантных бактерий мало, тем не менее их легко можно отобрать из очень большого числа исходна смешанных мутантных бактерий. [c.191]

    Хромосомную карту Е.соИ можно получить, если смешать клетки Hfr и р- и дать возможность конъюгации происходить в течение опре-деленного интервала времени, а затем клетки интенсивно перемешать, например, в гомогенизаторе Уоринга. В результате этой процедуры все конъюгационные мостики разрушаются и процесс спаривания бактерий прерывается. Спаривание прерывают через разные промежутки времени и определяют наличие в бактериях-реципиентах генов, перенесенных иа Клеток донорного штамма. При помощи этого метода было показано,, что для полного переноса хромосомы при 37 °С требуется приблизительно 100 мин и что локализацию любого гена в хромосоме можно приблизительно установить по времени, необходимому для переноса этого гена в клетку-реципиент. В действительности, однако, все выглядит несколька сложнее. Поскольку полный перенос всей хромосомы осуществляется редко, в опытах обычно используются разные подштаммы Е. соИ К-12, У которых фактор F расположен в разных местах во всех случаях гены,, локализованные по часовой стрелке сразу же за точкой интеграции (рис. 15-1), переносятся быстро и с высокой частотой. [c.191]

    Триптофансинтетаза (стр. 141) состоит из двух субъединиц А и В (или а и ), первая из которых содержит всего лишь 268 аминокислот. Тонкую структуру гена А удалось картировать следующим образом. Было выделено большое число мутантных бактерий, неспособных расти на среде, не содержаш,ей триптофана (ауксотрофы по триптофану). Генетические скрещивания проводились с помощью специального трансдуцирующего бактериофага Pike [134]. В процессе размножения в чувствительных к ним бактериях трансдуцирующие бактериофаги иногда включают в собственную ДНК часть бактериальной хромосомы. В дальнейшем, когда такой фаг заражает другие бактерии, часть его генетической информации может переноситься в результате рекомбинации 3 хромосомы бактерий, переживших инфекцию. Используя серии мутантов с делециями аналогично тому, как это было сделано при картировании гена гЛ, удалось разделить ген А на ряд участков, а исследование частоты рекомбинаций позволило осуществить точное картирование. [c.251]

    Умеренные фаги способны вносить существ, изменения в структуру и функционирование бактериального генома благодаря двум процессам - интегращш фаговой ДНК в хромосому бактерии и трансдукции (переносу фагом бактериальных геиов из одних клеток в другие). Трансдуцирую-щие фаги образуются в результате неточного исключения из хромосомы интегрир. фаговой ДНК. При этом часть собственной ДНК фага утрачивается, и вместо нее в фаговый геном включается участок бактериальной ДНК, достигающий иногда значит, размеров. Интегрир. фаги могут мутировать и терять способность к исключению из хромосомы, становясь вследствие этого ее неотъемлемой частью. В этом случае гены фага начинают определять ф-ции клетки, т.е. становятся ее собств. генами. [c.80]

    Изменение расположения генов в хромосомах (т.наз. хромосомные М.) происходит в результате дупликации (повторения) гена, инверсии (переворота одного или неск. генов на 180°), транслокации, илн транспозиции (переносе участка хромосомы, соизмеримого по длине с геном, в новое положение в той же или в даугой хромосоме), а также делеций-выпадения участка генетич. материала (от неск, нуклеотидных пар до фрагментов, содержащих неск. генов частный случай дефишенси-нехватка генов на конце хромо сомы). При траислокации ряда генов наблюдается т. наэ эффект положения ген а-изменение проявления ак тивности гена при перемещении его в др. участок хромосомы. Этим объясняется, напр., появление полосковидных глаз у дрозофилы. [c.154]

    Участок Ti-плазмиды, встречающийся в хромосомах раститель-ньге клеток, называется Т-областью в бактерии и Т-ДНК в клетках растений. Т-область включает примерно 10% Ti-плазмиды и содержит гены, отвечающие за индукцию опухоли, синтез опинов и подавление дифференцировки (гормоннезависимый рост клеток). Важно отметить, что все гены, ответственные за перенос и интеграцию генов Т-области, находятся не в ней самой, а рядом — в области вирулентности — vir-области (рис. 5.17). [c.146]


Смотреть страницы где упоминается термин Хромосома хромосомы перенос: [c.243]    [c.27]    [c.27]    [c.131]    [c.135]    [c.206]    [c.203]    [c.128]    [c.257]    [c.257]    [c.258]    [c.259]    [c.269]    [c.287]    [c.297]    [c.230]    [c.145]    [c.128]   
Молекулярная генетика (1974) -- [ c.226 , c.231 , c.238 ]




ПОИСК





Смотрите так же термины и статьи:

Ориентированный перенос хромосом

Перенос генов с помощью искусственных дрожжевых хромосом

Перенос генов с помощью целых хромосом

Перенос генов, опосредованный хромосомами MGT

Хромосома Hfr, полярность переноса

Хромосома перенос

Хромосома перенос

Хромосома хромосомы

Хромосомы



© 2025 chem21.info Реклама на сайте