Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент при кипении

    В области 2 коэффициент теплоотдачи а зависит от перемешивания жидкости, которое возникает в результате увеличения и движения пузырьков пара. В этой области коэффициент теплоотдачи а быстро увеличивается с росто.м температурного напора и достигает больших значений. Ввиду того, что интенсивность процесса зависит в основном от образования и движения пузырьков, эта область кипения называется пузырьковым кипением. Критическая разность температур, при которой величина коэффициента теплоотдачи возрастает до максимума, у жидкостей, указанных в табл. 30, находится в пределах между 20 и 50° С. [c.109]


Фиг. 54. Зависимость коэффициента теплоотдачи ири кипении сахарного раствора от средней логарифмической разности температур Фиг. 54. <a href="/info/26365">Зависимость коэффициента</a> теплоотдачи ири кипении <a href="/info/66490">сахарного раствора</a> от <a href="/info/1069210">средней логарифмической разности</a> температур
    С целью использования теплоты сгорания применяются аппараты погружного горения. Нагретые газы барботируются через слой жидкости, вода испаряется, а соли кристаллизуются. Коэффициент использования теплоты сгорания топлива достигает 95— 96%. Данный метод концентрирования применим для переработки стоков, содержащих соединения с температурой кипения в 2— 3 раза выше температуры кипения воды. В этом случае отходящие пары воды могут быть сконденсированы и использованы в системах оборотного водоснабжения. [c.490]

    Коэффициент теплопередачи в зоне кипения все время изменяется по высоте трубок. В режиме пузырькового потока он выше, чем в зоне предварительного нагрева. При переходе от пузырькового к стержневому потоку коэффициент теплоотдачи увеличивается и достигает максимума, а затем снижается при переходе от стержневого потока к кольцевому. При дальнейшем увеличении паросодержания паровой поток обладает такой кинетической энергией, что срывает пленку жидкости со стенок трубки. Жидкость при этом оказывается в ядре потока в виде брызг и капель, а паровой ноток соприкасается непосредственно со стенкой трубы. Такой гидродинамический режим называется туманообразным потоком . В этом [c.97]

    Высота столба жидкости над поверхностью нагрева оказывает заметное влияние на величину коэффициента теплоотдачи, в особенности при низком давлении (вакууме). Это влияние объясняется в основном тем, что повышение давления вызывает увеличение температуры кипения жидкости, и, следовательно, уменьшает перегрев поверхности нагрева по отношению к кипящей жидкости, что приводит к снижению интенсивности образования пузырьков пара. [c.128]

    Процессы азеотропической перегонки применяются не только для разделения однородных в жидкой фазе азеотропов, но и для разделения систем компонентов с очень близкими точками кипения, ректификация которых обычными методами, вследствие близости коэффициента относительно летучести к единице, оказывается весьма затруднительной. В этом случае третий компонент должен образовать с одним из компонентов системы гомогенный или гетерогенный азеотроп, кипящий при более низкой температуре, чем низкокипящий компонент исходной бинарной системы, и играющий роль верхнего продукта фракционирующей колонны. [c.138]


    Компопепт Температура кипения при 760 мм рт. ст., °С Плотность при 20° Коэффициент преломления при 20° Выход, % вес. от фракции монохлоридов  [c.170]

    Величина коэффициента заполнения ф зависит от характера процесса, протекающего в аппарате, и принимается от 0,4 до 0,9. Для аппаратов, в которых в процессе работы повышается уровень реагирующих веществ, например пенообразование, ф = 0,44-0,6 в аппаратах с мешалками, где возможно образование при перемешивании воронки, ф = 0,75—0,8 в остальных аппаратах, где ие имеет место кипение, вспенивание и иное повышение уровня реагирующих веществ, ф = 0,85- 0,90. [c.121]

    Если азеотроп относится к категории неоднородных в жидкой фазе, то после конденсации и охлаждения дестиллатных паров, он расслаивается на два слоя, из которых один, более богатый третьим компонентом, возвращается обратно в перегонную систему, а другой представляет собой либо практически чистый низкокипящи компонент системы либо же подвергается дополнительному разделению для получения достаточной степени чистоты. Так, например, вода и уксусная кислота не образуют азеотропа, но их температуры кипения различаются всего на 18 С, так что обычная ректификация этой системы представляет известные трудности, благодаря небольшой величине коэффициента обогащения. [c.138]

    Метод анализа, примененный Горным бюро, основывался на перегонке, адсорбции и спектроскопии в ультрафиолетовой области. Сланцевый бензин вначале промывался разбавленными кислотой и щелочью для удаления смоляных кислот и оснований. Нейтральный бензин перегонялся затем на полупроцентные фракции по объему. Для каждой фракции определялись температура кипения, плотность, коэффициент преломления, содержание серы и азота, кроме того, проводился анализ углеводородов адсорбцией на силикагеле и по поглощению в ультрафиолетовой области спектра. [c.67]

    Увеличение пузырьков пара перед отрывом, а также подъем их в жидкости приводит в движение определенные столбики жидкости, которые вызывают циркуляцию и перемешивание жидкости во всем объеме и вдоль поверхности нагрева. Этим определяется в основном степень интенсивности передачи тепла от поверхности нагрева к жидкости. Поэтому при кипении в большом объеме жидкости, т, е. при естественной конвекции, коэффициент теплоотдачи а тем больше, чем больше частота образования пузырьков и чем больше количество центров парообразования на поверхности нагрева. Ввиду того, что частота отрыва пузырьков и количество центров парообразования зависят от разности температур поверхности теплообмена и жидкости, коэффициент теплоотдачи при кипении жидкости является функцией этой разности температур или теплового напряжения поверхности нагрева, [c.108]

    Фиг, 47, Зависимость коэффициента теплоотдачи и теплового потока от разности температур при кипении воды. [c.108]

    При кипении воды при атмосферном давлении область 2 ограничивается температурным перепадом от 5 до 25° С и тепловым потоком от 5000 до 1 млн. ккал/м час. При кипении воды изменение режима кипения, например на чистой хромированной поверхности, наступает приблизительно при 25° С (фиг. 48). Максимально достижимое значение коэффициента теплоотдачи в этом случае равно приблизительно 30 000 ккал м час°С. [c.109]

    В области 3, изображенной па фиг. 47, происходит новое изменение режима кипения, и при дальнейшем увеличении разности температур коэффициент теплоотдачи практически не изменяется. [c.110]

Фиг. 49. Зависимость коэффициента теплоотдачи а при кипении воды в трубке с различным состоянием поверхности от разности температур ДЛ Фиг. 49. <a href="/info/26365">Зависимость коэффициента</a> теплоотдачи а при <a href="/info/263083">кипении воды</a> в трубке с <a href="/info/1497979">различным состоянием</a> поверхности от разности температур ДЛ
    В табл. 55 дана сравнительная характеристика жидких металлов, воды, дифенильной смеси и расплава солей. Весьма эффективным теплоносителем с точки зрения значений коэффициента теплоотдачи, температуры плавления и кипения, удельной теплоемкости, а также стоимости перекачки является натрий. Недостатком натрия является высокая активность по отношению к кислороду. Он является очень опасным горючим и взрывчатым веществом. [c.329]

    Для расчета коэффициента теплоотдачи при пузырчатом кипении воды в большом объеме для давлений от р = 0,2 ата до р=100 ата, согласно М. А. Михееву, можно рекомендовать следующие формулы  [c.114]

    Значения постоянной С и коэффициента а при кипении некоторых жидкостей [c.115]

    В табл. 34 приведены значения отношений коэффициентов теплоотдачи при кипении водных растворов различных веществ и органических жидкостей к коэффициенту теплоотдачи при кипении воды a ajj o условиях одинаковых тепловых нагрузок [c.115]


    При кипении в вертикальных трубках характер течения оказывает значительное влияние на величину коэффициента теплоотдачи. [c.117]

    Сравнительные испытания показали, что коэффициенты теплоотдачи при кипении ВОТ и воды были приблизительно одинаковыми до тепловой нагрузки, равной приблизительно 95 ООО ккал/м час [c.120]

    Коэффициент теплоотдачи при кипении в вертикальной трубке можно, таким образом, выразить при помощи уравнения [c.123]

    Зависимость коэффициента теплоотдачи при кипении сахарного раствора с концентрацией до 50% от температурного напора между греющим паром и раствором может быть представлена в виде  [c.124]

    Для однородных фракций были определены содержание углерода и водорода, молекулярный вес, плотность, коэффициент преломления, удельная дисперсия, температура кипения и анилиновая точка, вязкость при 100°. В дополнение к этим данным для полностью гидрированных фракций экстракта был произведен приблизительный подсчет числа ароматических колец в молекулах фракций ароматического экстракта. Если допустить, что нафтеновые кольца в нефтяных углеводородах имеют такое же строение, как и бензольные кольца, и что кольца полициклических ароматических и циклопарафиновых углеводородов имеют конденсированную структуру, то на основании приведенных выше данных можно было определить структуру колец циклических углеводородов и число углеродных атомов в парафиновой боковой цепи, связанной с кольцом. [c.31]

    Результаты испытаний показывают, что коэффициент теплоотдачи у различных жидкостей имеет различную величину. Это вызывается прежде всего различными теплофизическими свойствами жидкостей, из которых наибольшее значение для кипения имеют поверхностное натяжение, вязкость, теплопроводность и удельный вес. [c.126]

    Повышение температуры жидкости в трубках приводит к уменьшению теплопроизводительности поверхности нагрева. При применении жидкостей с более низкой температурой тепловая производительность поверхности нагрева увеличивается. Увеличение производительности поверхности нагрева при кипении определяется более высоким коэффициентом теплопередачи при кипении жидкостей. Производительность поверхности нагрева зависит также от скорости протекающей жидкости. Небольшая скорость жидкости в трубках вызывает отложение твердых частиц на стенках трубок. [c.268]

    Теплопередача в обогреваемом аппарате определяется величиной коэффициента теплоотдачи на стороне конденсации водяного пара высокого давления и значением коэффициента теплоотдачи нагреваемого материала (конвективный теплообмен или кипение). [c.289]

Фиг. 214. Коэффициент теплоотдачи при кипении ВОТ. Фиг. 214. <a href="/info/21337">Коэффициент теплоотдачи</a> при кипении ВОТ.
    Для расчета коэффициента теплоотдачи при кипении ВОТ в вертикальных трубках при естественной циркуляции при тепловом напряжении до 170 000 ккал/м час можно пользоваться уравнением (129). [c.310]

    Экстракция [5.24, 5.31, 5.33, 5.55]. Метод основан на различной растворимости извлекаемого химического соединения в воде и растворителе, используемом в качестве экстрагента. Чем лучше извлекаемое соединение растворено в экстрагенте, чем больше разница температур кипения между ними, чем более химически устойчиво извлекаемое соединение к экстрагенту и чем меньше оно растворяет в себе экстрагента, тем более эффективен этот метод. Экстрагент должен равномерно распределяться в объеме обрабатываемой воды, обладать высоким коэффициентом распределения, иметь низкую растворимость в воде и отличающуюся от воды плотность. Как правило, применение метода экономически оправдано при концентрациях извлекаемых соединений более 3 кг/м . [c.484]

    Дальнейшая переработка сырых продуктов дегидрирования связана с перегонкой и ректификацией нри поп1гл еииом давлении. Температуры кипения этилбензола и стирола различаются иа 9° (136 и 145,2° соответственно), поэтому необходима очень эффективная ректифтгационная колонна с высоким коэффициентом орошения. Трудность заключается еи] е в том, что стирол нри тепловом воздействии сравнительно легко полимеризуется. [c.237]

    Коэффициенты активности можно найти, сравнивая аналитические концентрации с теми величинами, которые следует иодставлять в уравнения для растворов электролитов, для tofo чтобы получить соответствие уравиений с опытом. Необходимо иметь в виду, что характер взаимодействия и связанный с ним поправочный множитель зависят от того, находится лн раствор электролита в равновесии, иод действие.м внешнего электрического поля, или же в состоянии еш,е не установившегося рав ювесия, когда его состав не везде одинаков. Коэффициенты активности характеризуют силы взаимодействия в условиях равиовесня. Поэтому для их расчета следует пользоваться результатами измерений, проведенных в растворах, находящихся в состоянии равновесия, Этому условию отвечают данные по определению величии осмотического давления, температур кипения и затвердевания, э.д.с. и т. д. [c.79]

    Нефть представляет собой многокомпонентное сырье с непрерывным характером распределения фракционно1 о состава и соответственно летучести компонентов. Расчеты показывают, что значение коэффициента относительной летучести непрерывно (экспоненциально) убывает по мере утяжеления фракций нефти, а также по мере сужения температурного интервала кипения фракций. Эта особенность нефтяного сырья обусловливает определенные ограничения как на четкость погоноразделения, особенно относительно высококипящих фракций, гак и по отношению к "узости" фракций. С экономической точки зрения, нецелесообразно требовать от процессов перегонки выделить, например, индивидуальный чистый углеводород или сверхузкие фракции нефти. Поэтому в нефтепереработке довольствуются получением следующих топливных и газойлевых фракций, выкипающих в достаточно широком интервале температур бензиновые н.к.— 140 С (180 °С) керосиновые 140 (180)—240 °С дизельные 240 — 350 °С вакуумный дистиллят (вакуумный газойль) 350—400 °С, 400—450 °С и 450—500 °С тяжелый остаток — гудрон >490 °С (>500 °С). Иногда ограничиваются неглубокой атмосферной перегонкой нефти с получением в остатке мазута >350 °С, используемого в качестве котельного топлива. [c.166]

    При кипении воды на поверхностях, имеющих кaк fe-либo покрытие, шероховатых или оксидированных, кривая зависимости а = /(АО может существенно отличаться от соответствующей кривой для чистой поверхности. В данном случае может наступить интересное явление оксидированная поверхность или тонкая оболочка на трубке может при определенных условиях улучшить коэффициент теплоотдачи. [c.110]

    Повышение разности температур сверх критической приводит к резкому снижению интенсивности теплообмена в обрудовании, потому что пузырьковое кипение переходит в пленочное, и коэффициент теплоотдачи к кипящей среде значительно понижается. [c.111]

    Согласно Кридеру и Финалборгу зависимость коэффициента теплоотдачи а от разности температур Д/ при кипении некоторых жидкостей на горизонтальной поверхности при атмосферном давлении можно выразить соотношением [c.114]

    В соответствии с этим уравнением при среднем перепаде температур, равном приблизительно 5° С, коэффициент теплоотдачи при кипении составляет приблизительно 9000 к.кал1м час °С, а при перепаде в 10° С уже приблизительно 30 000 ккал/м час °С. 124 [c.124]

    Значения коэффициентов теплоотдачи при кипении различных жидкостей колеблются в пределах от 600 до 1500 ккал1м час°С. [c.189]

    Плотность и коэффициент преломления ароматических углеводородов, выделенных из тяжелого нефтяного сырья, а также обеспарафиненных циклопарафинов, свободных от ароматики, вообще высоки и намного больше, чем плотность и коэффициент преломления производных бензола и моноциклических циклопарафинов, кипящих в тех же пределах, что и сырье. Кроме того, плотность и коэффициент преломления быстро возрастают с увеличением температуры кипения тяжелых нефтяных фракций. Эти факты приводят к выводу о том, что циклопарафины и ароматические углеводороды тяжелого нефтяного сырья являются преимущественно полициклическими и что полициклический характер этих углеводородов усиливается с увеличением пределов выкипания фракций. Число колец в полицикли-ческих углеводородах различно для разных нефтей. Тяжелый газойль и масляные фракции из пенсильванской нефти содержат меньше полициклических углеводородов, чем эти же фракции из калифорнийской нефти. [c.30]

    Содержание алифатических и циклических олефинов вычислялось Горным бюро на основании коэффициентов преломления олофинового плато на адсорбтограмме. Каждая из пяти групп (парафины, нафтены, алифатические и циклические олефины и ароматика) наносилась на график зависимости объема от температуры кипения. Пики этого графика соответствовали по температурам кипения ожидаемым соединениям, и их содержание могло быть вычислено. Содержание индивидуальных соединений оценивалось таким же способом. [c.67]


Смотреть страницы где упоминается термин Коэффициент при кипении: [c.206]    [c.165]    [c.329]    [c.110]    [c.116]    [c.120]    [c.123]    [c.125]    [c.324]    [c.395]    [c.67]   
Справочник химика Том 5 Издание 2 (1966) -- [ c.574 , c.578 ]




ПОИСК







© 2025 chem21.info Реклама на сайте