Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Наириты свойства

    Свойства наирита обусловлены в основном его структурой. Наличие атома хлора при двойной связи повышает его стабильность к свободнорадикальным реакциям [1], к действию озона и солнечной радиации. Дипольный момент молекулы хлоропрена [c.368]

    Ниже приводятся физико-механические свойства вулканизованного покрытия на основе жидкого наирита. [c.444]


    Достоинствами таких покрытий являются однородность по физикомеханическим свойствам, отсутствие стыков и швов, высокая адгезия к металлической поверхности, возможность получения покрытий высокого качества на изделиях сложной конфигурации. В качестве материала для покрытий могут быть использованы жидкие хлоропреновые каучуки (наириты) и жидкие поли-сульфидные каучуки (тиоколы), жидкие кремнийорганические (силиконовые) каучуки. Наиболее распространенными являются способы нанесения покрьггий из растворов кистью или наливом. Покрытия бывают холодной или горячей вулканизации. [c.106]

    Наличие хлора при двойной связи помимо указанных свойств повышает стабильность каучука к действию озона и солнечной радиации. Хлоропрен при взаимодействии с кислородом образует полимерные пероксиды даже при низкой температуре в присутствии азота, содержащего небольшую примесь кислорода. Полимерные пероксиды в хлоропрене легко распадаются и инициируют самопроизвольную полимеризацию хлоропрена, что затрудняет получение наирита стандартного качества. Это вызывает необходимость проводить все операции (ректификацию, хранение, транспортировку, полимеризацию хлоропрена) в атмосфере азота, содержащего не более 10 % кислорода. [c.238]

    Хорошие результаты дает использование атактического полипропилена в качестве добавки для улучшения пластичности, клейкости поверхности при каландрировании и снижения усадки сырых резиновых смесей на основе бутадиен-стирольного каучука и полибутадиена Введение не более 12 вес. ч. атактического полипропилена в смеси из наирита обеспечивает хорошие технологические свойства, уменьшает липкость к валкам и практически не снижает физико-механические свойства вулканизатов, динамические свойства, а истираемость при этом снижается [c.63]

    Клей 10793 на основе бутадиен-нитрильного каучука и феноло-формальдегидной смолы 18 хорошо крепит к стали и дюралюминию резины на основе НК, наирита, СКС, СКН и других каучуков Клей нечувствителен к повышенной влажности и обладает высокой стабильностью свойств. Арматура, покрытая клеем, не менее 10 суток полностью сохраняет адгезионные свойства. Способ обработки поверхности металла не влияет на прочность крепления резины. [c.201]

    Сравнение значений для разных полимеров показывает, что увеличение химической стойкости и уменьшение долговечности приводят к увеличению Рс, так как при этом Д уменьшается, и наоборот, противоположное изменение этих параметров вызывает уменьшение Рс- В качестве примера можно рассмотреть поведение в соляной кислоте резин из СКС-ЗЭ-1, одна из которых вулканизована с помощью MgO, а другая с помощью серы (см. рис. 198). У серного вулканизата, кислотостойкость которого больше, чем вулканизованного MgO, а прочность меньше, разрушение резко ускоряется при концентрации агрессивного агента в 10 раз большей, чем у более прочного, но менее кислотостойкого. При изменении механической прочности и химической стойкости в одну сторону( например, при их одновременном увеличении) Рс в зависимости от их соотношения может сдвигаться в разных направлениях. Так, при сравнении относительной ползучести разных резин в озоне найдено, что у резины из наирита в Ю рзз больше, чем у СКС-30-1 (см. рис. 198). Это объясняется тем, что разница в химической стойкости между наиритом и СКС-30-1 велика, в то время как по прочностным свойствам резины из СКС-30-1 и из наирита отличаются мало. [c.342]


    В триэтаноламине степень набухания наирита 65% [2], изменение механических свойств СКЭП /( = 78, =80 [ЗЭ]. Коэффициент диффузии 0 = 0,3-10- м с [48]. [c.167]

    СКИ — изопреновый каучук, по структуре и свойствам аналогичен натуральному. На его основе разработаны резины для гуммирования полуэбонит ИРП-1395, эбониты ИРП-1394, 9И-17 и мягкие резины ИРП 1315, ИРП-2044, 6621. Крепление к металлу осуществляется через полуэбонит ИРП-1395 клеем 2572, вулканизация проводится закрытым способом. Для улучшения химической стойкости в эбонит добавляется наирит в соотношении 1 масс. ч. наирита к 2 масс. ч. СКИ-3. Для этой же цели рекомендуется эбонит 51-1626 [58, с. 100]. [c.226]

    Аналогичные результаты, свидетельствующие об определяющем влиянии структурирования полихлоропрена и агрегации частиц на свойства латексного геля при его двумерном растяжении были получены на примере наирита Ла7 [35, 36]. [c.233]

    Относительная роль указанных факторов — структурного и коллоидно-химического— в ухудшении технологических свойств полихлоропреновых латексов при их старении зависит, конечно, от рецептуры -и условий полимеризации и, кроме того, от температуры, при которой осуществляется старение. Так, сопоставление данных, приведенных в работе [32], с данными работ [35, 36] позволяет сделать заключение об относительно большей роли коллоидно-химического фактора при старении наирита Л-7 по сравнению с наи-ритом Л-4. С другой стороны, полученная [32] температурная зависимость скорости ухудшения технологических показателей латекса (рис. 8.2) и вычисленные на ее основе значения суммарной энергии активации процессов, вызывающих это ухудшение при старении (84 кДж/моль при 20°С —40°С и 53 кДж/моль при 50— 70 °С), позволили авторам предположить, что роль коллоидно-хи- [c.233]

    Наириты растворяются в органических растворителях и дают маловязкие и концентрированные растворы, которые легко можно наносить на защищаемую поверхность. Невулканизированные покрытия из наирита являются термопластичными. Они размягчаются при температуре выше 40°С. Если их выдержать несколько дней в растворе серной кислоты или хлористого натрия при 60-70° С, то покрытие вулканизируется и приобретает свойства резины. Такие покрытия отличаются хорошим сопротивлением старению, могут работать в кислотах, щелочах и растворах солей до 70 °С. Выдерживают кратковременный нагрев до 90-95 °С. [c.252]

    В этом случае надежная защита от коррозионного и абразивного износа может быть достигнута только с помощью резиновых покрытий. Покрытия из наирита показали хорошие защитные свойства. Опыт эксплуатации таких теплообменников имеется на некоторых заводах России и США (рис. 8.6). [c.253]

    Повышенными защитными свойствами обладают покрытия, получаемые на основе композиций битума с добавлением полимерных наполнителей (латекса, наирита и др.). Их применение рекомендовано для защиты сельскохозяйственной техники (табл. 55.12) [4]. [c.644]

    Из существующих марок жидких наиритов, исследованных ВНИИСКом, лучшую кислотостойкость, незначительную набухаемость в воде (до 2—3%) и хорошие механические свойства имеет наирит НТ (табл. 9). [c.193]

    Физико-механические свойства жидких наиритов" [c.194]

    Показатели основных физико-механических свойств гуммировочных материалов на основе жидкого наирита приведены ниже [89]  [c.79]

    Из НОВЫХ клеев на основе синтетических каучуков важное значение начинает приобретать наиритовый клей, представляющий собой раствор наирита НТ (полихлоропренового каучука низкотемпературной полимеризации) в смеси этилацетата и бензина. По химической природе и свойствам он сходен с гуттаперчей, но по клеящей способности превосходит его. Вулканизуется при взаимодействии с добавляемыми (перед употреблением клея) основными окислами (окисью цинка, окисью магния). Хорошо склеивает резину и кожу в обуви, а также текстильные ткани и другие материалы. [c.228]

    Хлоропреновый каучук, получаемый низкотемпературной полимеризацией, носит название наирит, а полученный сополимеризацией хлоропрена со стиролом (около 3%) — наирит С. Эти каучуки обладают повышенной бензо- и маслостойкостью,. устойчивы к окислению кислородом воздуха и озоном, теплостойки. Изготовленные из наирита резины выдерживают длительное нагревание до 140—150 °С. Благодаря дешевизне и хорошим свойствам находят все более широкое применение для производства ремней, транспортерных лент, клеев и др. [c.358]

    Вулканизаты полисульфидных полимеров имеют неудовлетвй-рительные адгезионные свойства. Для улучшения последних необходимо в вулканизуюш,ую смесь вводить специальные добавки или наносить подслой на герметизируемые поверхности. В качестве адгезионных добавок применяются эпоксидные или фенольные Смолы, в качестве подслоя (грунта) винильные, фурановые смолы И различные клеи. В отечественной промышленности применяют клей К-50 на основе жидкого тиокола и эпоксидной смолы, клей 88-Н и Н-5 на основе наирита и смолы фенолоформальдегидного типа. Лучшими адгезионными свойствами обладают хлорнанри-товый и наиритово-эпоксидные грунты [37]. [c.569]

    Невулканизованные покрытия из наирита НТ являются термопластичными и выще 40° С начинают размягчаться. Однако есл1 нх выдержать несколько дней в контакте с горячими жидкими средами, папример в растворе серной кислоты илн пова-ренпон соли, нагретом до 60—70° С, то покрытия постепенно вул-капилуются и приобретают все ценные свойства резины. [c.445]


    Вулканизованный хайпалон обладает резиноподобными свойствами, что используется для создания оболочек кабелей. Относительное удлинение вулканизатов около 400%. Наиболее ценные свойства этого материала — негорючесть, озоностойкость и мас-лостойкость. По сравнению с хлоропреновыми каучуками (неопреном, наиритом, стр. 196), обладающими также этим комплексом свойств, хайпалон-40 более нагревостоек и морозостоек. [c.106]

    Испытания соединений КПА осуществляли прямой заменой диафена ФП в резиновой смеси на основе Наирита ДП, а также ацетонанила в резиновой смеси на основе БНКС-40. При исследовании процесса приготовления резиновых смесей было выявлено, что КПА-50 не оказывает влияния на их технологические и вулканизационные свойства. Физикомеханические характеристики резин показывают, что по эффективности стабилизирующего действия соединение серии КПА находится на уровне широко известных противостарителей, а по некоторым показателям даже превосходят их. [c.94]

    Продолжительность смешения. В зависимости от типа каучука, количества и природы ингредиентов изменяется продолжительность смешения. Чем больше наполнителей и других ингредиентов содержится в резиновой смеси, тем больше требуется времени для ее изготовления. Продолжительность смешения, так же как и другие условия смешения, подбирают опытным путем с проверкой однородности резиновой смеси лабораторными методами. Продолжительность смешения колеблется в пределах от 20 до 40 мин. Увеличение продолжительности емешения не всегда приводит к улучшению качества резиновой "меси. Резиновые смеси на основе натурального каучука при продолжительном смешении могут быть перевальцованы, при этом они становятся очень пластичными и липкими, физико-механические свойства их вулканизатов ухудшаются. Резиновые смеси на основе наирита от продолжительного смешения перегреваются и прилипают к валкам, что нарушает нормальные условия обработки резиновой смеси. Перегрев резиновой смеси вследствие продолжительного смешения может вызвать преждевременную вулканизацию, особенно при наличии ускорителей с низкой критической температурой действия. [c.260]

    Изучение композиций на основе битума БН-1У, модифицированного дивинилстирольным термоэластопластом ДСТ-40, этиленпропиленовым каучуком СКЭП-30 (ТУ 38 103252—75), этиленпропилеядиеновым каучуком СКЭП-30 (ТУ 38 103231 — 74) и бутилкаучуком марки А, показало существенные преимущества этих составов перед другими исследованными композициями — битумно-наиритовыми и битумно-полиэтилено- выми. Например, по данным, полученным авторами [40], добавка полиэтилена нЪ вызывает заметного снижения температуры хрупкости и повышения температуры размягчения, а адгезионные свойства композиций ухудшаются введение наирита приводит к снижению их водоустойчивости. [c.39]

    Промышленностью освоен выпуск жидких наиритов — хлоропреновых каучуков, пригодных для использования в качестве пленкообразующих веществ. Покрытия из наиритов после вулканизации при 80—140°С обладают хорошими физико-механическими свойствами, однако вследствие низкой адгезии к металлам наносятся по грунтовкам. Покрытие на основе жидкого наирита НТ можно эксплуатировать без предварительной вулканизации, так как благодаря способности к кристаллизации оно через 2—3 недели приобретает удовлетворительные физико-механические свойства. Вулканизованные покрытия из жидких наиритов могут длительно эксплуатироваться при температуре 70 °С и кратковременно—при 90 °С у невулканизованных покрытий интервал рабочих температур меньше (от —25 до +50 °С). Повышенная температура ускоряет старение наиритовых покрытий они сначала теряют эластичность и упрочняются, затем растрескиваются. Если покрытие эксплуатируется в воде, то процесс старения при этих же температурах протекает медленнее. На морозе при —40°С покрытия становятся хрупкими [52]. Вулканизованные и невулканизованные покрытия из наирита НТ более водостойки, чем покрытия из нацрита А. Достоинством вулканизованных покрытий на основе нарита НТ является высокая износостойкость. [c.65]

    Рассмотрение свойств покрытий на основе каучуков, а также имеющийся опыт их применения в химической промышленности, в гидротехническом строительстве и Т д. позволяет считать целесообразным исследование возможности их использования для защиты подземных трубопроводов, где до сих пор каучуки применялись только в качестве добавок к битумным материалам (резина при изготовлении резино-битум-ных мастик, наириты в битумно-наиритрвых композициях и т. п.). - [c.66]

    Резина на основе ХСПЭ значительно. превосходит резину а оонове полихлоропрена по диэлектрическим свойствам, особенно после увлажнения, хотя ХСПЭ является е менее полярным. каучуком, -чем лолихлоропрен. Электричеокие характеристики реаин на оонове ХСПЭ-40, хайпалона 40 и наирита ПНК. приведены ниже  [c.140]

    Жидкие тиоколы (ГОСТ 12812—72) получили большое распространение в качестве герметиков и замазок, но одно1временно они применяются и для защитных покрытий. Для гуммирования они используются в виде трехкомпонентных составов — герметики УТ-31 и У-ЗОМ (ГОСТ 13489—68), состоящих из пасты жидкого тиокола с наполнителем, вулканизующей пасты и ускорителя вулканизации. Перед применением они смешиваются, наносятся ( шпателем или шприцеванием) на гуммируемую поверхность по двум слоям хлорнаиритовой грунтанки и вулканизуются на воздухе без подогрева в течение 1—2 сут. Полностью процесс вулканизации заканчивается за 5— 10 сут [146, с. 515 150, с. 52]. Жизнеспособность гуммировочных тиоколовых составов после смешения компонентов составляет 2— 8 ч. С повышением температуры и влажности воздуха жизнеспособность сокращается. Характеристика свойств покрытий на основе жидкого наирита и тиокола приведена в табл. У.Ю. [c.233]

    Клей 4НБув предназначается для склеивания вулканизованных резин и резинотканевых материалов на основе наирита, натурального, натрийбутадиенового каучуков, прорезиненного капронового полотна 300, губки Р-29 и других материалов без последующей вулканизации и невулканизованных резин и резинотканевых материалов на основе наирита и нитрильных каучуков с последующей вулканизацией. Рабочая температура эксплуатации от —50 до - -120°С. Свойства этих клеев и режимы склеивания приведены в таблице на стр. 325. [c.324]

    В книге описываются методы получения, свойства и способы применения новых антикоррозионных и герметизирующих материалов на основе жидких наиритов, тиокопов, а также жидких силоксановых каучуков и низкомолеку-.пярных полиизобутиленов. Наряду с рецептурой гуммиро-вочных составов приводятся подробные таблицы физикомеханических, антикоррозионных и других эксплуатационных свойств покрытий, рассматривается техника покрытий химической аппаратуры и другого оборудования и освещается опыт и перспективы применения этих материалов в различных отраслях промышленности СССР и зарубежных стран. [c.224]

    Хлоропреновый каучук — наирит. Ценное свойство наирита — высокая клеящая способность, поэтому его широко используют для приготовления клеев, например 88-Н. Газопроницаемость наирита в два-три раза ниже, чем у НК- Положительные свойства наирита повышенная озоностойкость, пониженная горючесть, высокая химическая стойкость. К недостаткам следует отнести низкую стойкость в бензине и маслах, нетехноло-гичность при переработке на каландрах. Полученные листы резиновой смеси склонны к подвулканизации. За рубежом известны хлоропрены следующих названий неопрены (США, Англия) и пербунан (ФРГ). [c.203]

    Рассмотрим прежде всего некоторые общие закономерности формирования структуры композиционных материалов на основе термопластов и эластомеров различной природы. Размер частиц эластичного наполнителя во всех рассмотренных системах (на основе ПВХ, наирита, каучуков общега назначения) определяется исходным размером его частиц и дополнительным измельчением в процессе смешения с материалом матрицы [1, 6]. Чем жестче материал матрицы — тем сильнее дополнительное измельчение, тем мельче размер частиц эластичного наполнителя в системе. Поэтому оптимальная степень наполнения может меняться в зависимости от условий смешения. С уменьшением исходного размера частиц степень их дополнительного измельчения уменьшается. При введении в полимерную матрицу тонкодисперсных вулканизатов (с размером частиц до 2 мкм) дополнительное измельчение практически не наблюдается. Применение тонкодисперсных вулканизатов (дисперсионного порошкового регенерата) должно обеспечивать большую стандартность свойств получаемых систем, иоско-льку при этом размер час-- [c.72]

    Известен способ стабилизации ХСП обработкой их вод-тными растворами азотсодержащих соединений (АСС) в скоростном смесителе. В данной работе было исследовано влияние различных типов и основности (константы ионизации Кв) водорастворимых АСС на термостабильность и адгезионные свойства ХСП. В качестве ХСП использовали три лартии хлорированного наирита (ХН), отличающиеся по [c.96]

    Опытами установлено, что введение ДЭМС в смеси улучшает технологические свойства смесей на основе Наирита — удается устранить липкость смесей к валкам ( Наирит прилипает к валкам [4]), что облегчает дальнейшую обработку. [c.57]

    Следует иметь в виду, что бакелитовые, а также другие тонкослойные лакокрасочные покрытия достаточно хорошо защищают сталь от коррозии водой, по не защищают ее от эрозии и тем более от интенсивного гидроабразивного износа. Между тем, часть теплообменной аппаратуры подвергается сильному механическому износу под воздействием катализаторной пыли, шламовых вод и других сред со взвешенными твердыми частицами. В этом случае надежная защита от коррозионного и абразивного износа может быть достигнута лишь с помощью резиновых покрытий. Во ВНИИСКе испытывался маленький стальной теплообменник, у которого внутренняя поверхность труб и трубные решетки были защищены вулканизованным покрытием из жидкого гуммировоч-ного состава на основе наирита НТ [17]. Гуммирование производили по схеме, изображенной на рис. 8.5. Длительные испытания с проточной водой при 80—85° С показали хорошие защитные свойства наиритового покрытия толщиной 1—1,2 мм. У гуммированного аппарата теплообмен, несомненно, будет несколько хуже по сравнению с теплообменником без защитного покрытия, и это следует учитывать при проектировании. Коэффициент теплопередачи для наиритового покрытия можно принимать равным 0,5 ккал/(м -ч). [c.159]

    На основе комбинации СКД и СКС с повышенным содержанием сажи и К5асла получаются резины, характеризующиеся высокими прочностью и износостойкостью, удовлетворительны.ми коэффициентом трения и сопротивлением выкрашиванию. Добавки СКД к СКН и наириту улучшают технологические свойства смесей, эластичность, морозостойкость и износостойкость резин. Сопротивле-нивс иин из этих каучуков набуханию уменьшается пропорционально добав-< [c.55]


Смотреть страницы где упоминается термин Наириты свойства: [c.444]    [c.123]    [c.167]    [c.182]    [c.242]    [c.408]    [c.433]    [c.37]    [c.4]   
Основы технологии синтеза каучуков Изд 2 (1964) -- [ c.482 ]




ПОИСК





Смотрите так же термины и статьи:

Наирит



© 2025 chem21.info Реклама на сайте