Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вынужденные колебания резонансные

    При равенстве частот вынужденных и собственных колебаний системы (со = = соо) амплитуда вынужденных колебаний стремится к бесконечности (х -чи оо). Это явление называют резонансом, а соответствующую частоту вынужденных колебаний — резонансной. [c.55]

    Методы вынужденных колебаний (резонансные) [c.165]

    Довольно широкое применение для измерения скорости продольных волн находит локальный метод вынужденных колебаний (резонансный метод), рассмотренный в разд. 2.4.2.2. Его обычно осуществляют с разделением функций излучающего и приемного преобразователей в иммерсионном варианте, поэтому основные причины, вызывающие погрешности измерений в контактных резонансных толщиномерах, устраняются. При представлении экспериментальных данных часто вместо скорости указывают обратно пропорциональную ей величину резонансную частоту. [c.736]


    В лаборатории разработаны технические задания на установки для измерения динамического модуля Юнга и скорости звука методом вынужденных колебаний (резонансный метод) скорости и погло- [c.226]

    Из соответствующего графика (рис. 3.8) видно, что пиковые значения перемещений возрастают пропорционально времени, причем их безграничное нарастание характерно только для линейной упругой консервативной системы (без трения). Увеличение амплитуд происходит во времени, следовательно, возможен переход через резонанс в период пуска машины при его достаточно малой длительности. Вместе с тем при наличии вынужденных колебаний эксплуатация машин в режимах, близких к резонансному, приводит к значительному увеличению коэффициентов динамичности и, как правило, не допускается. [c.55]

    Амплитудно-частотная характеристика при вынужденных колебаниях с вязким сопротивлением показана на рис. 3.9. В рассматриваемом случае влияние вязких сил сопротивления проявляется лишь в резонансной области в интервале 0,75 с о)/о)ц < 1,25. Максимальные значения динамического коэффициента х мало отличаются от резонансных значений, определяемых выражением (3.11). [c.56]

    Как видно из расчетов, при учете упругости опоры В низшая частота свободных колебаний близка к частоте вынужденных колебаний отношение частот попадает в резонансную область (ш/шо = 1,04). [c.62]

    Акустическое воздействие оказывает влияние на распад жидких струй. В опытах Б. П. Константинова [22] было показано, что воздействие на основание струи звуком, излучаемым этой струей, может привести к автоколебательному процессу усиления звука. Естественно поэтому, что возможен и резонансный режим вынужденных колебаний, приводящий к распаду струй. [c.125]

    При отношениях оз/шо, соответствующих резонансной области, коэффициент X, амплитуда Ло и напряжения а достигают очень больших значений, что ведет к нарушению нормального функционирования машины или даже к разрушению элементов ее упругой системы. В подобных случаях стараются вывести систему из резонансной области. Если частота со вынужденных колебаний задана, например, условиями выполнения технологического процесса, то тем или иным способом изменяют частоту собственных колебаний системы. Предпочтительно, чтобы при этом отношение ш/о)о было больше [c.56]

    Аналитическое определение частот собственных колебаний балок. Частоты собственных колебаний рассчитывают для сопоставления их с частотой вынужденных колебаний, т. е. для проверки непопадания в резонансную зону. [c.57]


    Аналитически резонансные угловые скорости можно определить, подставив в уравнение (463) к = пы. При этом уравнение становится биквадратным и, следовательно, легко разрешимым. Наблюдения показывают, что вблизи рабочих скоростей роторов ряда сепараторов наблюдаются недопустимые вибрации, которые можно объяснить совпадением собственных частот колебаний вращающегося вертикального вала с частотой вынужденных колебаний, обусловленных вращением горизонтального вала электродвигателя. Для иллюстрации данного положения на частотную характеристику сепаратора СОМ-3-1000 (рис. 256) была нанесена прямая, параллельная оси ш и отстоящая от нее по оси к на расстояние, соответствующее частоте возмущений от электродвигателя, равной 142 рад/с. Эта прямая располагается достаточно близко от нижней ветви частотной характеристики в зоне рабочей скорости сепаратора, т. е. в этой зоне собственная частота колебаний ротора близка к частоте колебаний электродвигателя. [c.368]

    При колебаниях машины, установленной на виброизоляторах, определенную роль играет демпфирование, в основном влияющее на амплитуду вынужденных колебаний в резонансной зоне. [c.432]

    В резонансных методах связь колеблющегося ОК с возбуждающей и принимающей колебания внешней системой приводит к смещению резонансной частоты относительно частоты свободных колебаний. Учесть это смещение трудно, а иногда невозможно, поэтому обычно считают, что частоты резонансов и свободных колебаний совпадают, допуская систематическую погрешность. В то же время амплитуды вынужденных колебаний больше, чем свободных, и измерения выполнять легче. При измерении резонансных частот стремятся оптимизировать взаимодействие возбудителя и приемника колебаний с ОК таким образом, чтобы эти [c.165]

    Интегральный метод вынужденных колебаний имеет различные способы реализации. Например, акустико-топографический метод, в котором регистрируется распределение амплитуд упругих колебаний на поверхности контролируемого объекта или его большом участке с помощью наносимого на поверхность липнущего порошка. Дефектная зона отличается увеличением амплитуды изгибных колебаний в результате резонансных явлений, вследствие чего оседание порошка на ней меньше. [c.166]

    Активные ультразвуковые методы разнообразнее по схемам применения и получили гораздо более широкое распространение. Для контроля используют стоячие волны (вынужденные или свободные колебания объекта контроля или его части), бегущие волны по схемам прохождения и отражения. Методы колебаний используют для измерения толщин при одностороннем доступе и контроля свойств материалов (модуля упругости, коэффициента затухания). Информативным параметром служат частоты свободных или вынужденных колебаний и их амплитуды. Используют также метод, основанный на измерении режима колебаний преобразователя, соприкасающегося с объектом импедансный метод). По амплитудам и резонансным частотам такого преобразователя (часто имеющего вид стержня) судят о твердости материала изделия, податливости (упругому импедансу) его поверхности. Податливость, в [c.17]

    Вынужденные колебания создают воздействием внешней силы с плавно изменяемой частотой (иногда применяют длинные импульсы с переменной несущей частотой). Регистрируют резонансные частоты по увеличению амплитуды колебаний при совпадениях собственных частот ОК с частотами возмущающей силы. Под влиянием возбуждающей системы в некоторых случаях собственные частоты ОК немного изменяются, поэтому резонансные частоты несколько отличаются от собственных. Параметры колебаний измеряют, не прекращая действия возбуждающей силы. [c.137]

    Локальный метод вынужденных колебаний (УЗ-резонансный метод) основан на возбуждении колебаний, частоту которых плавно изменяют. Для возбуждения и приема УЗ-колебаний используют совмещенный (рис. 2.7, б) или раздельные (см. рис. 2.7, а) преобразователи. При совпадении частот возбуждения с собственными частотами ОК (нагруженного приемопередающим преобразователем) в системе возникают резонансы. Изменение толщины вызовет смещение резонансных частот, появление дефектов - исчезновение резонансов (если дефект наклонный к поверхности изделия) или изменение их частот (если дефект параллелен поверхно- [c.137]

    Если толщина ОК существенно меньше, чем толщина используемого пьезоприемника, то ОК и пространственные вариации его свойств мало повлияют на резонансные характеристики пьезоприемника. Но пространственные вариации свойств объекта будут влиять на зависимость амплитуды вынужденных колебаний системы образец - пьезоприемник также на некотором расстоянии от места теплового воздействия. [c.287]

    Этот метод, более известный как УЗ-резонансный метод [247, 249], использует вынужденные колебания части ОК, в которой контактным или иммерсионным преобразователем возбуждают колебания непрерывно меняющейся частоты. На частотах, на которых по толщине ОК (для иммерсионного контакта) или системы ОК- преобразователь (для контактного способа) укладывается целое число полуволн, возникают резонансы. Их фиксируют на экране, где горизонтальная ось -меняющаяся частота. Изменение толщины ОК вызовет смещение резонансных частот, появление дефектов - исчезновение [c.292]


    Отметим, что для режима вынужденных колебаний с постоянной частотой характер зависимости Ц .п будет иным. В этом случае возможны резонансный и нерезонансный режимы настройки (см. рис. 2.120). [c.316]

    При импульсном возбуждении в вибраторах свободных колебаний их несущие частоты, зависящие от механического импеданса ОК, устанавливаются автоматически и не регулируются. Поэтому резонансные режимы, повышающие чувствительность при работе вынужденными колебаниями, здесь невозможны. В результате при работе с совмещенными преобразователями импульсные дефектоскопы по чувствительности уступают дефектоскопам, использующим непрерывные колебания. Однако благодаря применению РС-преобразователей импульсные дефектоскопы обнаруживают более глубокие дефекты. [c.324]

    Как отмечалось, при контроле методом вынужденных колебаний ОК возбуждают контактными преобразователями (обычно пьезоэлектрическими), а собственные частоты регистрируют по резонансному увеличению амплитуды колебаний. Для устранения влияния неинформативных составляющих спектра вьшолняют спектральный анализ по специальной программе с применением компьютера. [c.805]

    Для контроля деревянных столбов используют метод собственных колебаний. Вынужденные колебания возбуждают по длине столба, по крайней мере один из концов которого должен быть доступен для установки преобразователей. Если оба конца недоступны, преобразователи устанавливают в специально просверленное отверстие. Качество ОК оценивают по ширине резонансной кривой (по добротности). Дефекты ОК снижают добротность. [c.811]

    Локальный метод вынужденных колебаний применяют для измерения малых толщин при одностороннем доступе. Контактный резонансный толщиномер, принцип действия которого показан на рис. 24, б, в бО-х годах XX в. был основным средством толщинометрии. В настоящее время для ручного контроля применяют импульсные толщиномеры. Для автоматического измерения толщины стенок тонких труб лучший результат дает иммерсионный резонансный толщиномер. [c.215]

    Интефальный метод вынужденных колебаний применяют для определения модулей упругости материала по резонансным частотам продольных, изгибных или крутильных колебаний образцов простой формы, вырезанных из материала изделия, т.е. при разрушающих испытаниях. Этот метод используют также для неразрушающего контроля небольших изделий абразивных кругов, турбинных лопаток. Появление дефектов или изменение свойств материалов определяют по изменению спектра резонансных частот. [c.215]

    Резонансные методы и методы свободных колебаний наиболее просты и обеспечивают высокую точность определения динамических характеристик материала в широком интервале температур. Однако они страдают существенным недостатком, состоящим в том, что частота измерения зависит от жесткости образца, а так как жесткость изменяется с температурой, то измерения проводятся при различных частотах. Поэтому для определения частотной и температурной зависимостей вязкоупругих свойств предпочтительнее использовать нерезонансные методы вынужденных колебаний. [c.118]

    Подобная картина свойств необходима в широком диапазоне изменений как температуры, так и частоты и к тому же для более чем одной моды деформации, поскольку интенсивность и положения переходов зависят от вида напряжения. На практике применяется растяжение (включая изгиб), сдвиг (включая кручение) и трехосное деформирование. Тем не менее, более естественно подразделение на типы колебаний, а не на виды напря-жения, потому, что виды деформации обусловливают диапазон частот в отличие от методов ступенчатого возбуждения (см. главу 5), которые не имеют подобных резко отличающихся временных интервалов. Основная классификация испытаний включает свободные колебания, вынужденные колебания (резонансные или нерезонансные) и волновое распространение, приближенно перекрывая соответственно следующие диапазоны частот 0,01— 10 Гц 10—5-10 Гц и 5-10 —16 Гц. Аналогичное подразделение имеется в экспериментах по диэлектрической проницаемости. Мостовая техника, соответствующая вынужденным методам механических колебаний, используется на частотах 10—16 Гц. Начиная с 10 Гц, применяются резонансные радиочастотные схемы. Выше 10 Гц начинает доминировать индуктивность, и методы ламповых схем приходится заменять методами распределенных цепей, опирающимися на волновое распространение через диэлектрическую среду. Это соответствует распространению колебаний на ультразвуковых частотах в вязкоупругой среде, причем связанных с теми же самыми экспериментальными трудностями потерь энергии на границах раздела сред, отражением волн, эффектом согласования генератора с образцом и т. п. Как правило, амплитуда возбуждения уменьшается с ростом частоты из-за ограничения энергетических возможностей аппаратуры, но даже на самых низких частотах большинство типичных экспериментов проводится в области линейности. Этим объясняется, почему анализ относительно прост. Значительно более важно то, что функция динамического отклика не определяется через интеграл свертки, так что уникальные среди вязкоупругих функций комплексные модуль и податливость могут быть непосредственно подставлены в качестве упругого модуля или упругой податливости в любые формулы зависимости напряжения от деформации, и для вязкоупругих материалов могут быть выбраны известные решения упругих колебательных систем. Это свойство будет использовано в следующих разделах. [c.61]

    Как показал теоретический анализ, в области низких концентраций СО скорость реакции возрастает с увеличением содержания СО, а при высоких значениях концентрации скорость падает при уве-личер1ии этой концентрации. При промежуточных значениях концентраций СО существуют три стационарных состояния системы, два из которых устойчивы и одно неустойчиво. Устойчивым состояниям соответствуют максимальная и минимальная скорости окисления. Пусть концентрация СО в смеси варьируется по синусоидальному закону, в котором (Feo)о — средняя по времени концентрация СО в смеси. Пусть величина (Feo) о выбрана так, что стационарное состояние системы соответствует нижней устойчивой ветви скорости. В этом случае возможно существенное увеличение скорости реакции нри переходе к циклическому изменению концентраций смеси. Это произойдет тогда, когда амплитуда и частота вынужденных колебаний таковы, что для части периода колебаний нестационарная концентрация будет соответствовать верхней ветви скорости реакции. Как видно из рис. 2.11, нри неизменных значениях амплитуды колебаний и начальной концентрации СО в области безразмерных частот (о 0,45 наблюдается резонансное поведение системы, и средняя по времени скорость реакции проходит через максимум в нестационарном режиме W = 0,262. Это значение скорости в десять раз превышает соответствующее значение скорости в стационарном режиме и в два раза — значение скорости в квазистационарном циклическом режиме (ш 0). Такое поведение обусловлено динамическими взаимодействиями внутри системы, связанными с вынужденным переводом покрытий поверхности катализатора СО от нижнего значения к верхнему. При больших значениях часто средние но времени значения скорости приближаются к стационарным, а при малых — к квазистацнонарным. Заметим, что для рассматриваемого примера имеет место также экстремальная зависимость наблюдаемой скорости окисления СО от величины амплитуды колебаний при фиксированной частоте колебаний. [c.62]

    Ип решешш (3.147), (3.148) следует, что амплитуды вынужденных колебаний в резонансных случаях зависят от параметров синус- и косинус-образов Фурье ядра Г, смещения фаз г 3 , 1152 и от соотношений амплитуд вы( ,щннх возмущений. [c.140]

    Исследуем зависимость резонансного значения угла А = шах а поворота абсолютно твердого тела 3 относительно оси х от параметров системы путем изменения модуля Ег варьировалась я ест-кость конструкции при принятых ранее значениях других параметров механической конструкции. На рис. 3.7, а, б, в приведены амплитудно-частотные характеристики нри различных значениях мгновенного модуля упругости Ег. На рис. 3.8 приведена зависимость резонапспых значений Лреэ. max от модуля Е . Максимальные резонансные значения амплитуды вынужденных колебаний количественно оценивают интенсивность диссипативных процессов в системе, которая тем выше, чем пиже пики резонансной максимальной амплитуды. [c.152]

    При использовании методов колебаний возбуждают свободные или вынужденные колебания либо ОК в целом (интегральные методы), лкбо его части (локальные методы). Свободные колебания возбуждают путем кратковременного внешнего воздействия на ОК, например путем удара, после чего он колеблется свободно. Вынужденные колебания предполагают постоянную связь (через преобразователь) колеблющегося ОК с возбуждающим генератором, частоту которого изменяют. Измеряемыми величинами служат частоты свободных колебаний либо резонансов вынужденных колебаний, которые несколько отличаются от свободных под влиянием связи с возбуждающим генератором. Эти частоты связаны с геометрией ОК и скоростью распространения ультразвука в его материале. Иногда измеряют изменение амплитуды колебаний при вариации частоты в широком диапазоне частот — аплитудно-частотную характеристику (АЧХ) или величины, связанные с затуханием колебаний амплитуды свободных или резонансных колебаний, добротность колебаний, ширину резонансного пика. Методы вынужденных колебаний, основанные на анализе колебаний системы ОК — преобразователь при резонансных частотах или вблизи них, называют резонансными. Различные варианты методов колебаний рассмотрены в 2.6. [c.11]

    Локальный метод вынужденных колебаний чаще всего применяют для измерения толщины объектов при одностороннем доступе, например тонкостенных труб и оболочек. Применению эхометода в этом случае мешает мертвая зона. Приборы для реализации этого метода называют резонансными толщиномерами. Они основаны на возбуждении в стенке по толщине ОК ультразвуковых колебаний и определении частот, на которых возникают резонансы этих колебаний. В простейшем случае, представляя стенку ОК как пластину, поверхности которой с обеих сторон свободны, условие возбуждения упругих резонансов записывают в виде [c.166]

    Контроль клеевых соединений на прочность и наличие дефектов выполняют реверберационным методом (см. п. 3.2.2) и методом вынужденных колебаний, который также называют им-педансно-резонансным методом. Последний применяют при не- [c.254]

    Если пьезонластина возбуждается переменным иапряжсинем другой частоты, то после переходного процесса с этой частотой начинаются вынужденные колебания с постоянной амплитудой. Однако амплитуда зависит от частоты (рис. 7.9) при очень малых частотах она практически равна статическому изменению толщины согласно формуле (7.1), которое на рис. 7.9 было произвольно принято равным единице. С повышением частоты до резонансной г она увеличивается до некоторого максимума, высота которого зависит от коэффициента затухания, и затем снова падает. [c.152]

    Локальный метод с использованием вынужденных колебаний известен как ультразвуковой резонансный метод. Его применяют в основном для измерения толщин. В стенке изделия 3 (рис. 24, б) с помощью преобразователей 2, 4 (обычно это совмещенный преобразователь) возбуждают упругие волны (обычно продольные) непрерывно меняющейся частоты. Фиксируют частоты, на которых отмечаются резонансы системы преобразователь - изделие. По резонансным частотам определяют толншну стенки изделия и наличие в нем дефектов. [c.212]


Смотреть страницы где упоминается термин Вынужденные колебания резонансные: [c.56]    [c.12]    [c.56]    [c.41]    [c.615]    [c.687]   
Механические испытания каучука и резины (1964) -- [ c.294 ]




ПОИСК





Смотрите так же термины и статьи:

Колебания вынужденные

Резонансные



© 2025 chem21.info Реклама на сайте