Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Печень фруктозы

    Фермент гексокиназа способен катализировать фосфорилирование не только В-глюкозы, но и других гексоз, в частности В-фруктозы, В-маннозы и т.д. В печени, кроме гексокиназы, существует фермент глюкокиназа, который катализирует фосфорилирование только В-глюкозы. В мышечной ткани этот фермент отсутствует (подробнее см. главу 16). [c.328]

    Три важнейших моносахарида — глюкоза, фруктоза и галактоза — главные конечные продукты переваривания углеводов. Эти моносахариды поступают в кровь и с током крови, через воротную вену, попадают в печень. Фруктоза и галактоза в печени фосфорилируются ферментами, затем преобразуются в глюкозу или подвергаются превращениям, подобным тем, которые претерпевает глюкоза. Поэтому обмен углеводов в основном сводится к обмену глюкозы (рис. 235). [c.362]


    При метаболизме фруктозы в организме большая ее часть фосфорилируется в печени при воздействии особого фермента — фруктокиназы в положении С-1 и образует фруктозо-1-фосфат. Считают, что при участии специфической альдолазы фруктозо-1-фосфат превращается в диокси-ацетонфосфат и глицеральдегид. Глицеральдегид восстанавливается до глицерина, затем через глицерол-З-фосфат окисляется до диоксиацетонфосфата. [c.126]

    В печени фруктозо-2,6-бисфосфат, образующийся под действием БИФ (см. часть I, рис. 6.18, 6.19), является аллостерическим регулятором гликолиза и аллостерическим ингибитором глюконеогенеза. [c.381]

Рис. 16.2. Гормональная регуляция системы фруктозо-2,6-бисфосфата (Ф-2,6-Р,) в печени при участии цАМФ-зависимых протеинкиназ. Рис. 16.2. <a href="/info/1898069">Гормональная регуляция системы</a> фруктозо-2,6-бисфосфата (Ф-2,6-Р,) в печени при участии <a href="/info/187980">цАМФ-зависимых</a> протеинкиназ.
    Сорбит усваивается постепенно, превращаясь в печени человека во фруктозу, которая для усвоения требует меньше инсулина, чем другие углеводы этим объясняют возможность использования сорбита для диабетического питания [6]. [c.178]

    Известно также, что метаболизм фруктозы по гликолитическому пути в печени происходит гораздо быстрее, чем метаболизм глюкозы. Для метаболизма глюкозы характерна стадия, катализируемая фосфофруктокиназой-1. Как известно, на этой стадии осуществляется метаболический контроль скорости катаболизма глюкозы. Фруктоза минует эту стадию, что позволяет ей интенсифицировать в печени процессы метаболизма, ведущие к синтезу жирных кислот, их эстерификацию и секрецию липопротеинов очень низкой плотности в результате может увеличиваться концентрация триглицеридов в плазме крови. [c.555]

    Из кетогексоз наибольшее значение имеет о-фруктоза, которая широко используется в лечебном питании, поскольку для ее расщепления ие требуется инсулин. В живом организме фруктоза быстро усваивается и иа ее основе печень вырабатывает гликоген. о-Фруктоза очень хорошо растворима в воде, прекрасно поглощает влагу и ее растворы отличаются низкой вязкостью и устойчивым фруктовым вкусом и запахом. В промышленности фруктоза используется при консервировании, изготовлении фруктовых соков, сиропов и других безалкогольных напитков. [c.42]

    В 1980 г. группой бельгийских исследователей (Г. Хере и др.) в ткани печени был открыт фруктозо-2,6-бисфосфат, который является мощным регулятором активности двух перечисленных ферментов  [c.342]


    Дисахариды и крахмал в организме человека распадаются с образованием моносахаридов (см. раздел 3.1.3). Галактоза и фруктоза превращаются в печени в глюкозу, так что в крови содержится исключительно глюкоза (около 0,1 7о). Накапливаются углеводы в организме в виде гликогена, построение и хранение которога также происходит в печени. Для обеспечения постоянного содержания сахара в крови гликоген может вновь расщепляться с образованием глюкозы. Другая возможность покрыть потребность организма в углеводах состоит в [c.699]

    Гликоген синтезируется главным образом в печени из глюкозы и других моносахаридов (например, фруктозы и галактозы), образующихся из пищи. Дисахариды [c.252]

    Получение глюкозофруктозных сиропов. Фруктоза (фруктовый, плодовый или медовый сахар) — важнейший в физиологическом и технологическом отношении природный моносахарид. Превращаясь в печени и кишечнике млекопитающих в глюкозу, фруктоза включается в пластический и энергетический обмен клетки. Она в 2,5 раза слаще глюкозы и в 1,7 раза слаще тростникового сахара (сахароза), благодаря чему фруктоза — менее калорийный пище- [c.94]

    Фруктоза появляется в моче очень редко и встречается главным образом при обильном попадании этого сахара в пищу в случаях недостаточной функции печени или при диабете. [c.286]

    Таким образом, в печени из молекулы D-фруктозы образуются две молекулы глицеральдегид-З-фосфата. [c.459]

    Но не всегда гипергликемию и связанную с ней глюкозурию надо рассматривать как патологическое явление. Повышение сахара в крови и появление его в моче могут быть следствием сильного психического возбуждения, особенно у нервных субъектов (стр. 245), либо результатом введения в организм с пищей в один прием или длительно слишком больших количеств сахара, превышающих ассимиляционную способность печени. Характерно, что порог проницаемости почек для различных сахаров неодинаков. Так, например, у здорового человека сахар в моче появляется после однократного приема 170—180 г глюкозы, 150—200 г сахарозы, 120—150 г фруктозы и 30—40 г галактозы. Такие формы п и- [c.273]

    Рассматривая промежуточный обмен углеводов в печени, необходимо также остановиться на превращениях фруктозы и галактозы. Поступающая в печень фруктоза может фосфорилироваться в положении 6 до фруктозо-6-фосфата под действием гексокиназы, обладающей относительной специфичностью и катализирующей фосфорилирование, кроме глюкозы и фруктозы, еще и маннозы. Однако в печени существует и другой путь фруктоза способна фосфорилироваться при участии более специфического фермента—фруктокиназы. В результате образуется фруктозо-Ьфосфат. Эта реакция не блокируется глюкозой. Далее фруктозо-Ьфосфат под действием альдолазы расщепляется на две триозы диоксиацетонфосфат и глицеральдегид. Под влиянием соответствующей киназы (триокиназы) и при участии АТФ глицеральдегид подвергается фосфорилированию до глицеральдегид-З-фосфата. Последний (в него легко переходит и диоксиацетонфосфат) подвергается обычным превращениям, в том числе с образованием в качестве промежуточного продукта пировиноградной кислоты. [c.555]

    Обмен фруктозы. Около 80% поступающей с пищей фруктозы метаболизируется в печени двумя путями. Главный путь фруктоза фосфорилируется в первом положении с образованием фруктозо-1-фосфата, который специфической альдолазой Ф-1-Ф расщепляется на диоксиацетонфосфат и глицеральдегид. Глицеральдегид превращается в 3-ФГА при участии АТФ и триозокиназы. Образовавшийся диоксиацетонфосфат и 3-ФГА могут превращаться в глюкозу по реакции глюконеогенеза или подвергаться распаду (аэробному или анаэробному). Для глюконеогенеза фруктоза нерентабельна, поскольку ее концентрация в крови ниже концентрации глюкозы в 20 раз. Для продукции энергии в клетках (и прежде всего в печени) фруктоза особенно важна, так как ферменты фруктокиназа и альдолаза Ф-1 -Ф не находятся под строгим гормональным контролем. Поэтому при патологии систем регуляции обмена углеводов и поражениях печени целесообразно назначать фруктозу (как источник энергии для клеток). [c.179]

    Следует отметить, что при генетически обусловленной нетолерантности к фруктозе или недостаточной активности фруктозо-1,6-бисфосфатазы наблюдается индуцируемая фруктозой гипогликемия, возникающая вопреки наличию больших запасов гликогена. Вероятно, фруктозо-Ьфосфат и фруктозо-1,6-бисфосфат ингибируют фосфорилазу печени по аллостерическому механизму. [c.555]

    Фруктозо-1,6-дифосфатаза (КФ 3.1.3.11) катализирует расщепление фруктозо-1,6-дифосфата на фруктозо-6-фосфат и неорганический фосфат. Фермент локализован в гиалоплазме, поэтому в качестве источника используют безмитохондриальный гомогенат печени крысы. Для проявления ферментативной активности необходимы ионы или Мп , оптимум водородного показателя сильно зависит от концентрации активирующих ионов и природы буфера. В глициновом буфере в присутствии Mg2+ максимальная скорость наблюдается при pH 9,2. [c.66]

    Цель задачи заключается в изучении регуляторных свойств фруктозо-1,6-дифосфатазы печени крысы как фермента-участника субстратного цикла. Фруктозо-1,6-дифосфатаза (D-фруктозо-1,6-дифосфат-1-фосфогидролаза, КФ 3.1.3.11) катализирует реакцию гидролиза фруктозо-1,6-дифосфата с образованием фруктозо-6-фосфата  [c.354]

    Аллостерическая регуляция фруктозо-1,6-дифосфатазы печени крысы. [c.503]


    Глюконеогенез в печени сильно ускоряется глюкагоном и адреналином. Эффекты, вызываемые циклическим АМР, могут включать стимуляцию фруктозо-1,6-дифосфатазы и ингибирование фосфофруктокина-зы [46]. Влияние на взаимодействие между пируватом и РЕР, которое также имеет место, может быть непрямым и состоять в стимуляции а-кетоглутаратного метаболизма. [c.513]

    Можно было думать, что клетки сводят к минимуму кругооборот субстрата в таких циклах, однако экспериментальные данные, полученные при исследовании печени крыс, показали, что в случае цикла фруктозо-1,6-дифосфатаза— фосфофруктокиназа реальная скорость составляет 3 мкмоль КГ -С [54]. Неожиданно высокая скорость кру- [c.513]

    В печени, однако, для этого существует другой путь. В ней имеется фермент фруктокиназа, который катализирует фосфорилирование фруктозы не по 6-му, а по 1-му атому углерода  [c.336]

    Как отмечалось, наиболее мощным аллостерическим активатором фосфофрукто1шназы-1 и ингибитором фруктозо-1,6-бисфосфатазы печени [c.553]

    Глюконеогенез ЭТО образование нового сахара из неуглеводных предшественников, среди которых наибольшее значение имеют пируват, лактат, промежуточные продукты цикла лимонной кислоты и многие аминокислоты. Подобно всем прочим биосинтетическим путям, ферментативный путь глюконеогенеза не идентичен соответствующему катаболическому пути, регулируется независимо от него и требует расхода химической энергии в форме АТР. Синтез глюкозы из пирувата происходит у позвоночных главным образом в печени и отчасти в почках. На этом биосинтетическом пути используются семь ферментов, участвующих в гликолизе они функционируют обратимо и присутствуют в большом избытке. Однако на гликолитическом пути, т. е. на пути вниз , имеются также три необратимые стадии, которые не могут использоваться в глюконеогенезе. В этих пунктах глюконеогенез идет в обход гликолитического пути, за счет других реакций, катализируемых другими ферментами. Первый обходный путь-это превращение пирувата в фосфоенолпируват через оксалоацетат второй-это дефосфорилирование фруктозо-1,6-дифосфата, катализируемое фруктозодифосфатазой, и, наконец, третий обходный путь-это дефосфорилирование глюкозо-6-фосфата, катализируемое глюкозо-6-фосфатазой. На каждую молекулу D-глюкозы, образующуюся из пирувата, расходуются концевые фосфатные группы четырех молекул АТР и двух молекул GTP. Регулируется глюконеогенез через две главные стадии 1) карбоксилирование пирувата, катализируемое пируваткарбоксилазой, которая активируется аллостерическим эффектором ацетил-СоА, и 2) дефосфорилирование фруктозо-1,6-дифосфата, катализируемое фруктозодифосфатазой, которая ингибируется АМР и активируется цитратом. По три атома углерода от каждо- [c.617]

    Организм человека или животного не в состоянии построить глюкозу из неорганических веществ. Однако в печени и в почках молочная кислота и а-аминокислоты могут превращаться в глюкозу глюконеоге-нез). Важным промежуточным продуктом при этом, как и при деструкции глюкозы, является та же пировиноградная кислота. Тем не менее глюконеогенез не представляет собой просто обращения процесса гликолиза. Дело в том, что в перечисляемых ниже трех ступенях гликолиза равновесие сильно смещено в сторону образования продуктов реакции при реакции, катализируемой гексокиназой, в сторону получения глю-козо-6-фосфата при реакции, катализируемой фосфофруктокиназой — в сторону фруктозо-1,6-дифосфата при реакции с участием пируваткиназы — в сторону пировиноградной кислоты. Поэтому в процессе глюконеогенеза эти ступени обходятся (рис. 3.8.2). Обращение превращения пировиноградной кислоты в фосфат енола пировиноградной кислоты осуществляется действием оксалилуксусной кислоты при участии ферментов пируваткарбоксилазы и фосфатенолпируваткарбоксилазы  [c.701]

    Всосавшиеся в кишечник продукты расщепления пишевЫ веществ, такие, как сахара и аминокислоты, попадают в кроВ воротной вены, которая поступает в печень. В печени из различ ных моносахаров (фруктоза и галактоза) образуется глюкоза которая затем поступает в общий кровоток. Избыток глюкозь [c.194]

    Подобно АМФ, он ингибирует фруктозо-1,6-дифосфатазу и активирует фосфофруктокипазу Известно, что синтез 2,6-ФДФ ингибируется цАМФ. Следовательно, индуцированный глюкагоном рост внутриклеточной концентрации цАМФ в клетках печени должен снижать уровень 2,6-дифосфата, что приводит к активации глюконеогенеза, гликолиз при этом блокируется. [c.276]

    Этот новейший метод нашел применение при выделении панкреатической рибонуклеазы цыпленка на фосфоцеллюлозе [35] и фруктозо-1,6-дифосфатазы печени кролика на карбоксиме-тилцеллюлозе [36]. Эффективность этого метода видна из следующего примера при очистке глюкозо-6-фосфатдегидрогеназы путем элирования фермента с СМ-сефадекса 2 мМ раствором глюкозо-6-фосфата выход фермента составил 91%, а удельная активность увеличилась в 51 раз [37]. [c.10]

    В эпителиальных клетках, выстилающих тонкий кишечник, D-фруктоза, D-галактоза й D-манноза частично превращаются в D-глюкозу (разд. 15,9). Смесь всех этих простых гексоз поглощается эпителиальными клетками, выстилающими тонкий кишечник, и доставляется кровью в печень. [c.747]

    Большая часть потребленной свободной D-глюкозы в печени фосфорилируется при помощи АТР с образованием глюкозо-б-фосфата. Поглощенные в тонком кишечнике D-фруктоза, D-галактоза и D-манноза также превращаются в D-глюкозо-б-фосфат в результате ферментативного процесса, рассмотренного ранее (разд. 15.9). D-глюкозо-б-фосфат лежит, таким образом, на перекрестке всех путей превращения углеводов в печени. Метаболизм этого соединения в печени может осуществляться по пяти основным направлениям, и выбор какого-нибудь одного из них зависит от ежечасно и даже ежеминутно меняющихся спроса и предложения (рис. 24-9). [c.752]

    Острое и повторное отравление. Животные. При вдыхании Б. в концентрации 3693 мг/м крысы не погибают, но у них изменяется частота дыхания, развиваются раздражение глаз и верхних дыхательных путей, функциональные нарушения ЦНС (по критериям — двигательная активность, норковый рефлекс), печени (по выделению гиппуровой кислоты). При 855 53 мг/м также наблюдаются нарушения функции ЦНС, изменения активности фруктозо-1-фосфатальдолазы в сыворотке крови. Концентрация 206 45 мг/м была недействующей (Иванов и др.). [c.89]

    АМФ, АДФ И несколькими другими соединениями она ингибируется цитратом и АТФ. Ясно, что когда отношение АТФ/АДФ в клетке низкое, то будет осуш,ествляться дальнейшее расш,епление глюкозы, а когда это отношение высокое, расш епление глюкозы прекратится. Пируваткиназа нз дрожжей [21] и печени [22[ активируется фруктозо-1,6-дифосфатом. [c.62]

    Однако превращение фруктозы в глюкозу может осуществляться с большой скоростью (в печени и мышцах) и при участии другой более сложной ферментной системы (фруктокиназы, фосфорилирующей фруктозу с образованием фруктозо-1-фосфата). [c.256]

    Миллер и его сотрудники [109] предложили другую трактовку сберегающего влияния углеводов на белки. Пользуясь методом перфузии изолированной печени крысы, эти авторы нашли, что глюкоза и фруктоза уменьшают экзогенное образование мочевины из белков крови и печени, тогда как лактат, пируват я а-кетоглутарат не проявляют сберегающего действия по отношению к азоту добавленной полной смеси аминокислот. Миллер с сотрудниками предполагают, что сбережению азота способствует уменьшение отношения окисленной формы дифосфопири-диннуклеотида к восстановленной форме. Все реакции, снижающие это отношение (в результате увеличения количества восстановленной формы кофермента), должны подавлять катализируемое глутаматдегидрогеназой образование аммиака и тем самым, как можно предполагать, уменьшать количество образуемой мочевины. Можно ожидать, что количество восстановленного кофермента будет повышаться в результате распада глюкозы и жирных кислот. Однако следует учитывать, что отношение окисленной формы дифосфопиридиннуклеотида к восстановленной зависит от множества реакций обмена. Отмечено, что величина этого отношения изменяется в различных условиях, однако данные по этому вопросу весьма противоречивы так, по сообщениям одних авторов, содержание этих нуклеотидов в тканях при голодании повышается, по сообщениям других — понижается или же остается на неизменном уровне (см. [699]). [c.182]

    Фруктозоаминокислоты, например фруктозо-Ь-аланин и фрук-тозо-Ь-глутаминовая кислота, были выделены Борсуком и сотрудниками [640] из ткани печени. Отмеченное авторами активирование включения аминокислот в ретикулоциты, по-видимому, обусловливалось в основном соединениями этого типа в сочетании с железом но не исключено существование и других активирующих факторов. [c.279]

    Следует упомянуть здесь также и о том, что глюконеогенез в печени подчиняется определенному гормональному контролю и что наиболее резко выраженное повышение содержания было отмечено для таких ферментов, как фруктозо-1,6-дифосфатаза, глюкозо-6-фосфатаза и пируваткарбоксилаза. [c.301]


Смотреть страницы где упоминается термин Печень фруктозы: [c.127]    [c.590]    [c.513]    [c.521]    [c.343]    [c.554]    [c.555]    [c.403]    [c.59]    [c.197]    [c.287]   
Биохимия человека Т.2 (1993) -- [ c.207 ]

Биохимия человека Том 2 (1993) -- [ c.207 ]




ПОИСК





Смотрите так же термины и статьи:

Фруктоза

Фруктоза Л Фруктоза

Фруктозаны



© 2025 chem21.info Реклама на сайте