Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распределительная хроматография химические реакци

    Для выделения анализируемого лекарственного вещества из многокомпонентной лекарственной формы используют хроматографию. Особенно перспективно применение для экспресс-анализа распределительной хроматографии на бумаге и тонкослойной хроматографии. После выделения лекарственного вещества из лекарственной формы выполняют химические реакции на ионы или функциональные группы, причем эти реакции могут быть выполнены прямо на хроматограмме. [c.249]


    Широкое применение газовой хроматографии обусловлено многими ее преимуществами по сравнению с другими физикохимическими методами анализа. Виды хроматографии классифицируются по природе разделения адсорбционная (использование различной адсорбируемости разделяемых веществ на твердой поверхности) распределительная (поглощение разделяемых соединений жидкостью, различия в растворимости между двумя сосуществующими жидкими или жидкой и газовой фазами) осадочная (образование нерастворимых соединений в результате химической реакции с осадителем). По признаку агрегатного состояния подвижной и неподвижной фазы классификация дана в табл. 1.32. [c.66]

    Распределительный метод, несомненно, менее информативен, чем масс-спектральный, но он более дешев и прост. Недостаток его информативности может быть в какой-то мере уменьшен путем использования ряда селективных систем и использования химических реакций. Распределительный метод имеет еще одну ван -ную функцию — концентрирование примесей, значение определения которых постоянно увеличивается в современной науке и технике. Данное сопоставление обоих методов проведено только с целью оценки областей применения обоих методов. По нашему мнению, вполне оправдано, особенно при анализе очень сложных смесей, компоненты которых находятся в ничтожных концентрациях (примеси), использование следующих комбинаций методов распределение — хроматография — масс-спектрометрия. [c.106]

    Этот метод, в частности, может быть использован при экспресс-анализе реакционной массы, что позволяет следить за течением химических реакций. Кроме того, с помощью тонкослойной хроматографии удобно контролировать степень очистки органических соединений, В зависимости от природы неподвижной фазы тонкослойная хроматография может быть адсорбционной, распределительной, молекулярно-ситовой, осадочной. Ниже рассмотрен весьма широко применяемый адсорбционный вариант тонкослойной хроматографии. [c.52]

    В табл. 8 приведено сравнение результатов определения ацетона по методам газо-жидкостной распределительной хроматографии и химическому. Последний метод, основанный на реакции с солянокислым гидроксиламином, дает общее содержание карбонильных групп, которое затем пересчитывают на ацетон. [c.156]

    Таким путем многие сорта обычной фильтровальной бумаги можно сделать пригодными для разделения различных смесей неорганических веществ. Елисеевой доказана возможность применения хроматографии на бумаге в качественном химическом анализе. Распределительную хроматографию целесообразно при этом сочетать с дробным методом анализа Н. А. Тананаева, употребляя специфические органические реактивы для открытия отдельных ионов. На одной хроматограмме можно обнаружить несколько катионов одним и тем же реактивом, например дающим характерные флуоресцентные реакции. Распределительная хроматография на бумаге для катионов показала большую разрешающую способность этого метода анализа. Можно разделять смеси, содержащие ионы щелочных металлов, благородных металлов от меди, разделять смеси ионов бериллия, алюминия, цинка и циркония и другие смеси. [c.115]


    Использование газо-жидкостной распределительной хроматографии при изучении химической реакции. (Рассмотрено влияние [c.178]

    Этот бурный рост обусловили три главных фактора. Во-первых, в 1952 г. явный успех методов ионного обмена и жидкостной распределительной хроматографии заложил основы для более скорого признания других хроматографических методов. Во-вторых, к 1952 г. методы анализа углеводородов были громоздкими, несовершенными и дорогостоящими. Качественный органический анализ, основанный на химических реакциях, является потенциально медленным и неполным, и поэтому физические методы более предпочтительны. Предлагаемый физический метод превосходно удовлетворял требованиям анализа неполярных летучих веш,еств. Наконец, не менее важным фактором было наличие неспецифичных детекторов, которые реагировали на все элюируемые компоненты образца и могли представить хроматографические результаты в форме, показанной на рис. 1 и 2. [c.18]

    При исследовании пищевых продуктов с содержанием витамина В свыше 1 мкг% может быть использован колориметрический метод, основанный на реакции кальциферолов с хлоридом сурьмы [17, 68]. Метод позволяет определять как холекальциферол (витамин Вз), так и эргокальциферол (витамин В2). При наличии обеих форм витамина В, что может иметь место в витаминизированных пищевых продуктах, определяется их сумма. Анализ состоит из следующих операций омыления (щелочного гидролиза), осаждения стеринов диги-тонином, хроматографии (адсорбционная и распределительная) и колориметрической реакции с хлоридом сурьмы. Метод пригоден для определения содержания витамина В в рыбьем жире, натуральной печени трески, яйцах, сливочном масле, икре рыб, пищевых продуктах, обогащенных витамином. Несмотря на удовлетворительную точность, химический метод весьма трудоемок и длителен, поэтому мало пригоден для контроля обогащаемых продуктов. [c.303]

    Анализ продуктов реакции проводился по следующей схеме общая кислотность и сумма карбонильных соединений в водных растворах определялись обычными химическими методами (титрованием щелочью и гидроксиламиновым методом), а состав их исследовался с помощью распределительной и газожидкостной хроматографии [11]. Реакционные газы на содержание СО, СО2 и О2 анализировались также методом газожидкостной хроматографии [12]. [c.20]

    Инсулин сильно агрегирован в 0,9%-ном растворе лрн pH = 7, но в очень разбавленных растворах при pH =2—3 он полностью диссоциирован. Молекулярный вес инсулина, определенный различнымифизически ми методами, равен 1,2 000, однако определение, проведенное химическим методом, показало ошибочность этой цифры. Харфенист и Крейг фракционировали инсулин методом противоточного распределения и показали, что кривая распределения соответствует идеальной для однородного вещества. В дальнейшем (1952) они подобрали условия частичной реакции белка с динитрофторбензолом, разделили продукты реакции распределительной хроматографией и, исходя из коэффициента экстинкции при 350 ммк (для монодинитрофенильного производного) и из кривой распределения, нашли значение молекулярного веса, равное 6500. [c.698]

    В группе ионообменных методов реакции, идущие на поверхности твердой фазы, происходят с непосредственным участием этой твердой фазы. Наряду с этими методами имеются еще две группы методов разделения, где твердая фаза не участвует в химической реакции. Твердая фаза является здесь, главным образом, носителем, удерживающим разделяемые компоненты в определенных местах. Иногда это удерживание основано на адсорбции вещества на поверхности носителя. В других случаях более важное значение имеет тонкий слой воды (или специальной жидкости), адсорбированный на поверхности носителя этот слой реэкстра-гирует вещество из движущегося слоя органического растворителя или поглощает его из газа и т. п. Разумеется, в таких методах невозможно применение статических приемов разделения (см. выше) возможны лишь динамические методы, когда разделяемая смесь проходит через сорбент, имеющий определенную форму, например, колонки, полоски бумаги или пластинки и т. п. К таким методам относятся бумажная (распределительная) и молекулярно-адсорбционная хроматография. Для обоих методов характерно то, что они применимы для разделения ионных компонентов молекулярных соединений. Молекулярно-адсорбционная хроматография применяется почти исключительно для разделения смесей органических соединений. [c.55]

    Исторически первыми были открыты адсорбционные процессы, обусловленные межмолекулярным взаимодействием, физические процессы концентрирования растворенных или газо-парообразных веществ на поверхности, например, активного угля или силикагеля [1]. Несколько позже в почвах были открыты процессы ионообменные — гетерогенные обратимые химические реакции двойного обмена [2]. Эти процессы не только позволили понять механизм многих агрохимических процессов [3], но и послужили основой для создания синтетических ионообменных сорбентов, нашедших самое широкое применение в аналитической химии, водопод-готовке, гидрометаллургии и пр. [2, 4—7]. Наконец, позже была показана возможность и целесообразность использования сорбентов-носителей, пропитанных растворителем или химически активными растворами последние дали возможность осуществить, в частности, процессы распределительной [8] и осадочной [9] хроматографии. [c.312]


    Несмотря на то, что ионообменные процессы были открыты еще в 60-х годах XIX в., иониты в хроматографических опытах (ионообменная хроматография) начали применять лишь в конце 30-х годов нашего столетия и особенно интенсивно — с момента развития работ в области атомной энергетики для анализа и выделения продуктов ядерных реакций [13]. В 40-х годах были предложены распределительная и осадочная хроматографии— процессы, связанные с использованием сорбентов, пропитанных раствором (распределительная) или химически-активным веществом, дающим осадки с компонентами смеси (осадочная). В 50-х годах были предложены газо-жидкостная хроматография [14] и ее вариант — хроматография капиллярная [15] и, наконец, сравнительно недавно — так называемая тонкослойная хроматография (см., например, [16]), отличающаяся не механизмом сорбционного процесса, а способом использования сорбента опыт проводится не па колонках сорбента, а в тонком слое измельченных веществ самой различной природы. Особый интерес для определения микропримесей представляет вакантная хроматография [17], в которой в анализируемую смесь, циркулирующую через сорбент, вводится порция растворителя или газа-носителя. [c.316]

    Использование меченых атомов при изучении механизма химических реакций с большим числом образующихся продуктов требует развития быстрых и эффективных методов разделения сложных смесей. Одним из таких методов, далеко, превосходящим ранее применявшиеся, является хроматография, широкое использование которой для изучения кинетики и механизма различного рода реакций стало возможным благодаря развитию термохроматографической и распределительной методик [3, 4, 5]. [c.391]

    Одним нз основных объектов хрОхматографии на бумаге явились с самого начала различные аминокислоты, пептиды и белки. На примере разделения аминокислот была разработана техника распределительной хроматографии отбор проб для анализа, получение и проявление хроматограммы, состав растворителей, и установлена определенная зависимость между структурой аминокислоты и их хроматографическими характеристиками при различном химическом составе и соотношении растворителей в их смеси. Было изучено разделение различных производственных аминокислот, комплексных соединений с катионами металлов, определение аминокислот в микробиологическом материале, после гидролиза, в растительном материале, в тканях животных, в крови, плазме, сыворотке крови, кровяных тельцах, моче, лимфе, эксудатах, спинномозговой жидкости, жидкости глазной камеры, желудочном соке, сперме, молоке, в органах, мускулах, в насекомых, животных, хромозомах, нуклеопротеинах, гисто-нах, протаминах, кератине, при различиях в группах крови и в других объектах. Хроматография помогла также при изучении энзиматических реакций и метаболизма аминокислот, галогени-рованных аминокислот и в других случаях. [c.202]


Смотреть страницы где упоминается термин Распределительная хроматография химические реакци: [c.46]    [c.60]    [c.118]    [c.13]    [c.682]    [c.92]   
Лабораторная техника органической химии (1966) -- [ c.479 , c.481 ]




ПОИСК





Смотрите так же термины и статьи:

Распределительная. хроматографи

Распределительный щит

Хроматография распределительная



© 2025 chem21.info Реклама на сайте