Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография молекулярная адсорбционная

    Молекулярная адсорбционная хроматография. Этот вид хроматографии имеет большое значение для аналитического и технологического разделения смесей органических веществ сложного состава, например растительных пигментов, витаминов, антибиотиков, аминокислот. Известны также примеры использования метода молекулярной адсорбционной хроматографии для разделения редкоземельных и радиоактивных элементов, хотя для этих целей чаще применяют методы ионообменной хроматографии. [c.69]


    МОЛЕКУЛЯРНАЯ АДСОРБЦИОННАЯ ХРОМАТОГРАФИЯ ЖИДКИХ ВЕЩЕСТВ [c.12]

    Работа 24.3. Молекулярная адсорбционная жидкостная хроматография. [c.303]

    Молекулярная адсорбционная хроматография. Молекулярная адсорбция основана на том, что поверхность различных адсорбентов обладает определенным количеством свободной потенциальной энергии, мерой которой является энергия единицы поверхности, называемая капиллярной постоянной. Поскольку согласно второму закону термодинамики процессы протекают в сторону уменьшения свободной энергии, поверхностная потенциальная энергия всегда стремится к минимальным значениям за счет накопления на поверхности адсорбента веществ с меньшей капиллярной постоянной, т. е. за счет адсорбции. [c.348]

    Молекулярно-адсорбционная хроматография [c.198]

    В основе молекулярной адсорбционной хроматографии лежит различие в адсорбционных свойствах компонентов разделяемой смеси. [c.12]

    Между ионообменной хроматографией и молекулярной адсорбционной, рассмотренной в предыдущей главе, существует принципиальное различие. Если молекулярная адсорбционная хроматография основана на адсорбции поверхностью твердой фазы веществ из раствора, то в ионообменной хроматографии осуществляется стехиометрический эквивалентный обмен ионов раствора на ионы [c.99]

    Адсорбционная хроматография (молекулярная и ионообменная). [c.314]

    Молекулярно-адсорбционная хроматография широко используется в газовой хроматографии, которая является в настоящее время основным методом анализа сложных газовых смесей, в нефтяной, газовой и коксохимической промышленности, широко используется при анализе продуктов пищевой, парфюмерной и фармацевтической промышленности. Громадное значение газовая хроматография приобретает в развитии промышленности органического синтеза. [c.306]

    Данная задача наглядно показывает возможности молекулярно-адсорбционной хроматографии. Схема работы близка по принципу к газовой хроматографии. Задача по разделению красителей на колонке с окисью алюминия в известной степени заменяет лабораторную работу по газовой хроматографии. При некоторой дополнительной затрате времени предлагаемую задачу можно в конце изменить, собирая не весь элюат каждого красителя в один сосуд, а отбирать отдельно и фотометрировать последовательно равные порции вытекающей жидкости. Это позволит составить выходную кривую для отдельных компонентов и познакомиться с методикой, принятой, например, для работ по разделению радиоактивных компонентов и т. п. В то же время построение выходной кривой делает такую задачу еще более близкой к газовой хроматографии задачу по газовой хроматографии трудно осуществить в учебной лаборатории за короткое время и самостоятельно. [c.62]


    Хроматография — метод разделения и анализа смеси веществ, основанный на различной сорбции компонентов анализируемой смеси определенным сорбентом. Впервые X. предложена в 1903 г. русским ученым М. Цветом. Разделение ведут в колонках, наполненных силикагелем, оксидом алюминия, ионообменными смолами (ионитами) и др., или же на специальной бумаге. Вследствие различной сорби-руемости компонентов смеси (подвижная фаза) происходит их зональное распределение по слою сорбента (неподвижная фаза) — возникает хроматограмма, позволяющая выделить и проанализировать отдельные вещества (процесс подобен многоступенчатой ректификации). В зависимости от агрегатного состояния подвижной фазы различают газовую и жидкостную X. по механизмам разделения — ионообменную, осадочную, распределительную и молекулярную (адсорбционную) X. в зависимости от техники проведения разделения в X. различают колоночную (колонки сорбентов), бумажную (специальная фильтровальная бумага), капиллярную (используют узкие капилляры), тонкослойную X. (применяют тонкие слои сорбентов). Методами X. анализируют смеси неорганических и органических соединений, концентрируют следы элементов. В химической технологии X. применяют для очистки, разделения веществ. X. позволяет разделять и анализировать смеси веществ, очень близких по свойствам (напр,, лантаноиды, актиноиды, изотопы, аминокислоты, углеводороды и др.). [c.151]

    В зависимости от природы процесса, обусловливающего механизм разделения, различают следующие варианты жидкостной хроматографии молекулярный адсорбционный, распределительный, ионообменный и ситовой, или гель-фильтрационный. [c.413]

    Применение жидкостной адсорбционной хроматографии. Жидкостная адсорбционная хроматография является одним из самых важных методов жидкостной колоночной хроматографии, так как с ее помощью можно эффективно разделять многие смеси соединений средней молекулярной массы (< 1000) — от неполярных углеводородов до высо- [c.58]

    В зависимости от характера процессов, на которых основано разделение, наиболее важно различать следующие виды хроматографии, которые широко применяются в химическом анализе I) молекулярная адсорбционная-, 2) распределительная, или бумажная, 3) осадочная 4) ионообменная. [c.69]

    Тонкослойная хроматография является вариантом жидкостной хроматографии, протекающей в тонком слое сорбента, причем толщина слоя существенно меньше его ширины (не менее чем в 5 раз). В тонкослойной хроматографии используются те же варианты, что и в колоночной жидкостной хроматографии. По составу фаз, участвующих в процессе хроматографического разделения, можно выделить следующие основные виды тонкослойной хроматографии [2] жидкость—[твердое тело], жидкость — [жидкость — твердое тело] и жидкость—[гель]. Разделение может быть реализовано при использовании различных принципов удерживания, поэтому тонкослойная хроматография бывает адсорбционной, распределительной, ионообменной, молекулярно-ситовой и аффинной. [c.5]

    Из различных методов молекулярной адсорбционной хроматографии необходимо отметить выделившуюся в самостоятельное направление газовую хроматографию хроматографию газов) . Смесь газов, проходящая через столбик адсорбента, разделяется так же, как и смесь веществ, находящихся в растворе. После поглощения промывают колонку каким-либо химически не активным газом ход вымывания отдельных компонентов совершенно аналогичен приведенному выше (см. рис. 10). Для определения концентрации вымываемого газового компонента применяют различные физические методы, например измерение теплопроводности газов. [c.70]

    В табл. 7 приведен список растворителей и адсорбентов, наиболее часто применяемых при разделении жидких смесей веществ методом молекулярной адсорбционной хроматографии. [c.28]

    Молекулярно-адсорбционная хроматография широко используется в газовой хроматографии для анализа сложных газовых смесей в нефтяной, газовой и коксохимической промышленности, при анализе продуктов, пищевой, парфюмерной и фармацевтической промышленности. Метод дает возможность определять микропримеси (10- —10- %) в различных продуктах. Адсорбируемость компонентов газовой смеси жидкостью или твердым телом зависит от температуры, давления газов, концентрации раствора, от природы и структуры адсорбтива и адсорбента. [c.199]

    Для хроматографического разделения смесей используют различные механизмы сорбции. В настоящее время наибольшее распространение получили такие виды хроматографии, как молекулярная (адсорбционная), ионообменная, осадочная и распределительная, а также и некоторые другие виды хроматографии. [c.298]

    Хроматографические методы можпо различать по условиям проведения разделения газовый и жидкостный по механизмам разделения молекулярно-адсорбционный, ионообменный, распределительный. Существенное значение имеет форма проведения процесса и способ неремещення смеси вдоль сорбента. Перемещение смеси можно осуществить в проявительном режиме, когда вещество-носитель практически не сорбируется. Этот метод обычно используется в газовой хроматографии. Перемещение смеси может быть во фронтальном режиме, нри котором происходит последовательное выделение сначала наименее сорбируемого компонента. Распространен и вытеснительный режим, при котором исходная [c.288]


    Между ионообменной хроматографией и адсорбционной молекулярной имеется существенное различие. Если молекулярная адсорбционная хроматография основана на явлении адсорбции, подчиняющейся в первом приближении теории Лэнгмюра, то ионообменная основана на стехиометрическом обмене ионов раствора с ионами ионита. В соответствии с этим вымывание адсорбированных веществ в молекулярной хроматографии может производиться чистым растворителем, тогда как в ионообменной в качестве вымывающего вещества необходимо применять растворы электролитов. [c.61]

    На основе молекулярно-адсорбционной хроматографии в последние годы чрезвычайно интенсивно развивается газовая хроматография. Еще недавно анализ сложной смеси газов был трудной, а иногда и практически неразрешимой задачей. Между тем для [c.59]

    Итак, разделение веществ методом молекулярно-адсорбционной хроматографии основано на различной адсорбируемости разделяемых веществ и различной скорости передвижения отдельных зон при промывании хроматографической колонки неводным растворителем. [c.349]

    Молекулярная адсорбционная хроматография жидкостей часто применяется в органической химии — в технологии и анализе. Этим методом весьма успешно изучают, например, состав нефти, керосина, углеводородов и эффективно разделяют транс- и цис-изомеры, алкалоиды и т. д. Обычно используются вытеснительный или проявительный методы. [c.156]

    В зависимости от механизма процесса сорбции жидкостную хроматографию классифицируют на молекулярно-адсорбционную (реализуется физическая адсорбция), ионообменную (ионообменная адсорбция), распределительную (в основе — 1>азличная растворимость разделяемых компонентов в жидкостях подвижной и неподвижной фазы), осадочную (осадитель в неподвижной фазе с разделенными компонентами образует соединения с различной растворимостью в подвижной фазе), гель-хроматографию (различная проницаемость молекул раз-.теляемых веществ в неподвижную фазу геля обусловлена размерами молекул). [c.213]

    Наиболее рациональная классификация современных видов хроматографического метода разделения компонентов гомогенных смесей учитывает природу взаимодействия разделяемых веществ и материала колонки. По этому признаку различают а) молекулярную хроматографию и б) хе-мосорбционную хроматографию. Молекулярная хроматография, в свою очередь, подразделяется на адсорбционную (этот метод описан М. С. Цветом) и абсорбционную моле- [c.7]

    Молекулярная адсорбционная хроматография жидкостей. Разделение в этом методе основано на различной молекулярной адсорбируемости компонентов смеси. Распределение вещества между сорбентом и раствором характеризуется изотермой адсорбции, показывающей зависимость количества адсорбированного вещества от [c.153]

    Классификация на основе природы элементарного акта. Если неподвижной фазой является твердое вещество, то элементарным актом взаимодействия анализируемого вещества (сорбата ) с твердой фазой (сорбентом) может быть 1) акт адсорбции— адсорбционная молекулярная хроматография 2) обмен ионов, содержащихся в твердой фазе, на ионы из раствора — ионообменная хроматография 3) химическое взаимодействие с образованием труднорастворимого осадка — осадочная хроматография. При адсорбционной молекулярной хроматографии жидких или газообразных веществ хроматографическое разделение основывается на различии адсорбционного сродства между компонентами разделяемой смеси и веществом твердой фазы, называемым в данном случае адсорбентом. Этот вариант хроматографии относится к классическому цветовскому варианту. [c.12]

    Известны два гшда хроматографии газо-адсорбционная и газо-жидкостная. В [И рвом случае в качестве адсорбента применяют гели, активные у ли, молекулярные сита, пористые стекла, модифицированные сорбенты. Во втором — в качестве сорбента служит тонкая пленка растворителя, слой так назы-паемой неподвижной фазы, нанесенной на инертный твердый носитель. [c.171]

    В группе ионообменных методов реакции, идущие на поверхности твердой фазы, происходят с непосредственным участием этой твердой фазы. Наряду с этими методами имеются еще две группы методов разделения, где твердая фаза не участвует в химической реакции. Твердая фаза является здесь, главным образом, носителем, удерживающим разделяемые компоненты в определенных местах. Иногда это удерживание основано на адсорбции вещества на поверхности носителя. В других случаях более важное значение имеет тонкий слой воды (или специальной жидкости), адсорбированный на поверхности носителя этот слой реэкстра-гирует вещество из движущегося слоя органического растворителя или поглощает его из газа и т. п. Разумеется, в таких методах невозможно применение статических приемов разделения (см. выше) возможны лишь динамические методы, когда разделяемая смесь проходит через сорбент, имеющий определенную форму, например, колонки, полоски бумаги или пластинки и т. п. К таким методам относятся бумажная (распределительная) и молекулярно-адсорбционная хроматография. Для обоих методов характерно то, что они применимы для разделения ионных компонентов молекулярных соединений. Молекулярно-адсорбционная хроматография применяется почти исключительно для разделения смесей органических соединений. [c.55]

    В литературе встречаются и другие классификации видов хроматографии. Например, иногда их подразделяют на хроматографию адсорбционную и распределительную, а также хроматографию, в которой стационарная фаза колонки обладает особым действием по отношению к разделяемым компонентам. К последнему виду относят ионообменную хроматографию, осадочную, адсорбционно-комплексообразовательную, гель-фильтрацию и т. д. Наиболее общей классификацией является классификация, в основе которой лежит природа атомно-молекулярного взаимодействия разделяемых компонентов и материала колонки. По этой классификации различают молекулярную и хемосорбционную хроматографию. Внутри этих видов хроматографии имеются разновидности. Молекулярная хроматография подразделяется на адсорбционную молекулярную хроматографию (этот вид описан М. С. Цветом) и абсорбционную молекулярную хроматографию (распределительная хроматография). Хемосорбцион-ная хроматография включает в себя ионообменную, осадочную и другие разновидности. [c.10]

    Таким образом, в изданных к настоящему времени монографиях работы последних 5—7 лет не рассмотрены. Вместе с тем именно за эти годы инфракрасная спектроскопия поверхностных соединений и адсорбционных комплексов развилась особенно сильно и выявились перспективы ее количественных применений в комплексе с другими методами. Эти особенности развития инфракрасной спектроскопии авторы старались учесть в настоящей книге, посвященной исследованиям методом инфракрасной спектроскопии химии поверхности и адсорбции окислами кремния и алюминия, аморфными алюмосиликагелями, а также кристаллическими пористыми алюмосиликатами — цеолитами. Таким образом, в книге рассмотрено сравнительно небольшое число окислов — окись кремния и алюминия, а также некоторые их аморфные и кристаллические соединения. Эти адсорбенты — аэросилы, аэросилогели (силохромы), силикагели, пористые стекла, алюмогели, алюмосиликатные катализаторы и различные катионированные и декатионированные цеолиты — весьма важны как для изучения взаимодействий при молекулярной адсорбции и хемосорбции, так и для практического использования в аналитической и препаративной хроматографии, в адсорбционных разделениях, в частности в осушке, в катализе и многих других важных областях технологии. [c.8]

    В результате работы, проведенной в НИИРе в 1955—1958 гг разработана методика выделения ускорителей и иротивостарите-лей из ацетонового экстракта при помощи молекулярно-адсорбционной хроматографии и последующей идентификации их цветными качественными реакциями [11]. Методика проверена на большом количестве смесей. [c.192]

    Как уже отмечалось в главе I, основные понятия и теоретические положения, лежащие в основе хроматографического метода, были сформулированы его основателем М. С. Цветом. В своих трудах он дал качественное теоретическое объяснение основных приемов получения хроматограмм. Несмотря на то, что Цвет разрабатывал главным образом вопросы теории молекулярной адсорбционной хроматографии, некоторые из установленных им теоретических положений имеют общее значение и для других видов хроматографии. Так, например, открытый Цветом закон адсорбционного замещения относится в равной мере и к молекулярной и к ионообменной хроматографии. Цвет сформулировал также условие, необходимое для осуществления хроматографического процесса. В своей монографии Хромофиллы в растительном и животном мире он писал Для того, чтобы два находящихся в растворе вещества могли быть разъединены по адсорбционным методам, необходимо, чтобы они занимали неодинаковый ранг в адсорбционном ряду (1910в, стр. 85). [c.47]

    Ионообменная хроматография. Ионообменная адсорбционная хроматография в отличие от молекулярной протекает под действием сил электровалентной (химической) связи. Она основана на обратимом стехиометрнческом обмене содержащихся в хроматографируемом растворе ионов на подвижные ионы адсорбента, который носит название ионита или ионообменнака. Если в молекулярной хроматографии вымывание адсорбированных веществ производят чистым раствори- [c.349]


Смотреть страницы где упоминается термин Хроматография молекулярная адсорбционная: [c.177]    [c.287]    [c.603]    [c.27]    [c.40]    [c.68]    [c.148]    [c.181]   
Количественный анализ (0) -- [ c.77 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционная хроматографи

Хроматография адсорбционная

Хроматография молекулярная



© 2025 chem21.info Реклама на сайте