Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Матрица структурная

    Таким образом, структурный цистрон (ген) служит матрицей для синтеза на нем соответствующей и-РНК. Последняя передает эту структурную информацию непосредственно рибосомам, т. е. в свою очередь становится матрицей для синтеза соответствующего белка. Синтез информационной матричной РНК на матрицах структурного цистрона находится под контролем определенных участков в цистронах ДНК-операторов, которые выполняют функции как бы пускового механизма. Оператор обычно расположен на крайнем отрезке цистронов. Формирование и-РНК начинается с оператора и распространяется последовательно вдоль цистрона или групп цистронов. Структурные цистроны, расположенные рядом в цепи ДНК, имеют общий координирующий оператор, который назван опероном. Скорость формирования и-РНК на структурных цистронах контролируется другой функциональной единицей — цистроном-регулятором, или ген-регулятором. Они образуют специфические белковые продукты, называемые репрессорами. Репрессоры, с одной стороны, связаны с оператором, а с другой, обладают способностью реагировать строго спе- [c.293]


    Молекулярное наслаивание представляет собой один из методов синтеза твердых веществ путем сборки на матрице структурных единиц. Этим методом можно получать многозонные твердые вещества, регулируя порядок расположения слоев, а также толщину слоя с точностью до одного монослоя, т. е. с предельно достижимой точностью. [c.203]

    Указанное представление процесса сильно идеализировано и ограничено областью малых растворимостей, отсутствием в матрице структурных деформаций при растворении.газа и химических реакций. Если непористые мембраны гетерофазны, а скорость сорбции растворенных газов на поверхности дисперсной фазы конечна, то процессы сорбции и диффузии в мембране протекают в одном масштабе времени, и в системе возможно возникновение локально-неравновесных состояний. [c.16]

    При различных условиях деформирования, соответствующих различным условиям эксплуатации, те или иные параметры могут по-разному влиять на поведение резин. В области малых деформаций (<1%) теплообразование и тангенс угла механических потерь определяются в основном типом сажи в области больших деформаций (> 10%) определяющую роль играет структура сетки подвижной каучуковой матрицы в области средних деформаций влияние различных структурных параметров соизмеримы между собой. [c.91]

    Для оценки эффективности функционирования гибкой системы вводится ее количественная характеристика, называемая критерием эффективности или критерием оптимальности. В качестве критерия оптимальности могут быть выбраны различные технологические или экономические показатели, например, суммарная продолжительность выпуска всех продуктов ассортимента, коэффициент использования оборудования, приведенные затраты и др. Назовем их частными критериями оптимальности Частные критерии оптимальности являются функциями следующих переменных X, У, I, V, и, где X —матрица параметров технологической гибкости системы У — матрица параметров конструкционной гибкости аппаратов системы 2 — вектор параметров структурной гибкости V—вектор параметров организационной гибкости У — вектор параметров гибкости системы управления. Тогда [c.66]

    Установлено, что добавки снижают вязкость пеков. Наибольший пластифицирующий эффект на пеки оказывают флуорен и нафталин. Видимо, флуорен и нафталин внедряются между макромолекулами пеков, раздвигают входящих в их матрицу структурные фрагменты, ослабляя тем самым межмолеку лярные силы. Пластификаторы взаимодействуют с макромолекулами пека, их сольватируют и препятствуют коагуляции, т.е. улучшают подвижность структурных образований пека. [c.87]


    Таким образом, подобно адсорбционному потенциалу, капиллярный потенциал характеризует дополнительное энергетическое взаимодействие в пористом теле. Однако если величина соответствует силам межмолекулярного взаимодействия структурных элементов матрицы мембран и компонентов газовой смеси, то капиллярный потенциал отражает влияние межмолекулярного взаимодействия между жидкостью и паром при искривленной поверхности раздела. Роль матрицы мембран сводится к формированию участков поверхности определенной кривизны за счет поровой структуры. [c.52]

    В заключение остановимся еще на одной особенности эластомеров, которая состоит в том, что они, как правило, используются в виде вулканизатов, т. е. материалов, в которых макромолекулы связаны между собой прочными химическими связями в непрерывную сетку. Свойства таких сеток в общем случае определяются как химической природой сшивок, так и целым рядом структурных характеристик каучуковой матрицы и наполнителя. [c.42]

    Для определения полной совокупности независимых стехиометрических простых реакций необходимо решить систему (1.2) для каждого неособенного минора ранга 17а структурной матрицы. Из полученной совокупности реакций выбрасываются абсурдные с точки зрения химической теории, а также вводятся дополнительно элементарные реакции, которые не определяются с помощью излагаемой процедуры. [c.23]

    Проблема изоморфизма возникает уже тогда, когда одному и тому же абстрактному графу могут соответствовать различным образом нарисованные топологические графы и без помощи ЭМВ, даже при простых структурах бывает трудно установить их идентичность. В том случае, когда один и тот же молекулярный граф необходимо представить с различным образом перенумерованными вершинами, количество ему соответствующих матриц зависит от способа нумерации вершин. При вводе в ЭВМ, например, структурная формула гептасульфида рения [c.97]

    Мембраны второго типа характеризуются существенным влиянием поверхностных явлений, прежде всего адсорбции возможно появление конденсированной фазы и эффекта капиллярности химический потенциал компонента зависит не только от температуры, давления и состава газовой смеси, но также и от свойств матрицы за счет поверхностной энергии. Влияние скелета мембраны на процесс разделения не ограничено, как в газодиффузионных, чисто структурными характеристиками, а предполагает появление новых видов массопереноса. Однако транспорт компонентов в основном материале мембраны исключен. Примером такого рода систем являются микропористые структуры и газовые смеси под давлением, содержащие компоненты со значительной молекулярной массой. [c.13]

    В непористых сорбционно-диффузионных мембранах сплошная матрица и газы образуют раствор. Структурная основа мембраны может быть кристаллической, аморфной или аморфно-кристаллической. Химический потенциал каждого компонента определяется, в первую очередь, взаимодействием с матрицей, а также другими компонентами разделяемой газовой смеси. Природа связи — физико-химическая (силовое поле молекул), механизм переноса — диффузионный, возможна диссоциа ция молекул, однако образование новых химических соединений [c.13]

    Таким образом, каждый тип мембраны характеризуется видом взаимодействия молекул газа и структурных элементов матрицы. Количественными характеристиками этого.взаимодействия являются энергия связи и потенциал, зависящие от параметров межмолекулярного взаимодействия, молекулярной природы и морфологии матрицы мембраны. Энергия связи определяется тепловым эффектом, сопровождающим образование системы мембрана — газ для сорбционно-диффузионных мембран— теплотой сорбции, в реакционно-диффузионных мембранах, кроме энтальпии растворения газов, заметный вклад вносит тепловой эффект химической реакции. В газодиффузионных мембранах энергия связи близка к нулю. [c.14]

    Матрицы пористых мембран представляют собой пористые среды, структурными свойствами которых обусловлен процесс разделения газовой смеси. При этом в газодиффузионных мембранах влияние матрицы ограничено в основном объемом пор и функцией распределения пор по размерам. В мембранах сорбционно-диффузионного типа, кроме того, существенно энергетическое взаимодействие компонентов газовой смеси и матрицы, количественно определяемое адсорбционным и капиллярным потенциалами. [c.38]

    Таким образом, коэффициент ускорения Фг определяется кинетическим фактором Di Di , структурными характеристиками мембранной матрицы 5у/Пз и связанным с этим отношением коэффициентов сопротивления переносу в газовой и адсорбированной фазах а также термодинамическим фактором [c.69]


    СТРУКТУРНО-МОРФОЛОГИЧЕСКИЕ ОСОБЕННОСТИ НЕПОРИСТОЙ МАТРИЦЫ [c.70]

    В непористых мембранах из-за отсутствия пор в плотном слое резко сокращается количество вещества, адсорбированного поверхностью, решающую роль играет растворимость газов в матрице мембраны. Процесс идет по механизму абсорбции, который условно включает стадии поверхностной сорбции и последующего растворения газа при этом возможна диссоциация молекулы газа или образование нового химического соединения. Таким образом, проникающее вещество и матрица мембраны образуют растворы, которые могут быть однофазными (в высокоэластичных полимерах) или гетерофазными (в полимерах композиционно-неоднородной структуры). Во втором случае необходимо различать дисперсную фазу и дисперсионную среду. В полимерах роль дисперсной фазы играют структурные образования, характеризующиеся периодичностью расположения макромолекул и большой плотностью упаковки. Обычно принимают, что проникающее вещество растворяется и мигрирует только в дисперсионной среде, обычно аморфной фазе, обладающей значительной долей свободного объема и большей подвижностью элементов полимерной матрицы. Мембраны, изготовленные из композиционных материалов с наполнителями или армирующими элементами, представляют собой многофазные системы. [c.71]

Рис. 4.18. Структурная схема фрейма Расчет-ректификационной колонны методом трехдиагональной матрицы Рис. 4.18. <a href="/info/24140">Структурная схема</a> фрейма <a href="/info/618826">Расчет-ректификационной колонны методом</a> трехдиагональной матрицы
    В уравнениях (3.16) и (3.17) Хт—мольная доля вещества матрицы мембраны 2гт, е т и е тт — координационное число и параметры парного взаимодействия молекул газа и структурных элементов матрицы. Если взаимодействие в мембране, которая рассматривается как раствор, определяется только дисперсионными силами, величину Ф,т можно оценить [11] неравенством [c.75]

    Используя неравенство (3.18), получим, что энтальпия растворения в первом приближении определяется параметрами парного взаимодействия молекул газа и структурных элементов матрицы мембраны [c.75]

    Расчетные соотношения для коэффициентов диффузии получены на основе представлений об аналогии этих -процессов в пористых и непористых двухфазных мембранах [6]. Дисперсная фаза в виде кристаллитов и других плотных структурных образований играет ту же роль, что непроницаемый скелет пористой мембраны — на межфазной поверхности возможна сорбция растворенного газа из дисперсионной среды форма и распределение плотных включений в матрице оказывают влияние на скорость переноса массы. [c.80]

    Ранее уже отмечалось, что растворимость и диффузия газов во многом определяются долей свободного объема и подвижностью структурных элементов матрицы мембраны. На основе безактивационной модели диффузии и теории свободного объема получены общие соотношения для анализа влияния давления на коэффициенты диффузии в растворах полимеров [см. уравнения (3.25), (3.31), (3.44), (3.46)]. [c.94]

    Проницаемость мембраны, как интегральная кинетическая характеристика, будет в соответствии с уравнением (3.52) зависеть от средних значений < ),>,> и <а > с учетом структурных изменений матрицы при всестороннем сжатии. [c.97]

    Первое допущение, кроме очевидной области низких давлений, достаточно корректно для полимерных материалов большой плотности с значительной долей упорядоченной фазы и малой подвижностью структурных элементов матрицы, например, полиэтилена высокого давления. Второе и третье допущения выполняются при давлениях до 5—6 МПа для газов с малой молекулярной массой в области состояний, значительно удаленных от линии равновесия жидкость — пар (7 7 с), например, гелия, аргона, азота, кислорода, что подтверждается экспериментально (6, 8, 10, 15]. [c.99]

    На рис. 2.1 в качестве примера показаны интегральная /(г) и дифференциальная fv(f) кривые распределения пор по эффективным радиусам г для тела с непрерывным спектром пор от Гт1п до Гтах И резко выраженным максимумом при г = 25 А. Такова модельная структура, характерная для пористых стекол. Рис. 2.2 дает представление о функции [(г) в трековых мембранах [8]. Интегральная кривая позволяет судить об изменении относительного объема пор (на единицу объема или массы пористой матрицы) дифференциальная кривая дает представление о количественном распределении пор определенного размера. Следует отметить, что структурные и дифференциальные кривые характеризуют не реальные полости матрицы мембраны, а их модельное представление в виде сфер, цилиндров и других геометрических форм. Методы получения функций распределения пор основаны на обработке изотерм сорбции в области капиллярной конденсации газа или на данных ртутной порометрни [1, 2]. [c.40]

    Общие положения такого подхода в принципе не противоречат известным принципам (см. главу 1) о возникновении ячеек самоорганизации в нелинейных неравновесных мембранных системах, поскольку возникающая в матрице неоднородная структура явно удалена от состояния равновесия, если иметь в виду характерные времена релаксации для структурных элементов полимерной матрицы. В известном смысле процессы переноса в таких системах приближаются к кооперативным явлениям, осложненными химическим взаимодействием проникающего вещества с другими компонентами в мембране. Следует заметить, что данные [18], послужившие основой такого рода обобщений, нуждаются в тщательной экспериментальной проверке. [c.104]

    Кристаллические и, плотные аморфные материалы обычно непригодны для создания мембран. Это обусловлено малой долей свободного объема и большим временем релаксации для процессов перераспределения вакансий и других дефектов структуры, в результате чего резко снижается растворимость газов и скорость миграции растворенного вещества. Равновесные и кинетические свойства подобных систем во многом определяются высокими значениями потенциала межатомного (межмолекулярного) взаимодействия, обычно превышающего средние значения кинетической энергии КьГ этим объясняется малая подвижность структурных элементов. Однако легкие разы типа Нг, Не, Оа, N2 с наиболее низкими значениями параметров (е,/, о, ) парного потенциала молекулярного взаимодействия могут в некоторых плотных матрицах образовывать системы с повышенной растворимостью и удовлетво рительными диффузионными характеристиками. Наиболее перспективны металлические мембраны на основе палладия для извлечения водорода, а также стекла для выделения гелия [8, 10, 19—21]. [c.114]

    Аморфная структура стекол объясняется чрезвычайно большими временами релаксации для процессов перераспределения свободных объемов и структурных частиц, образующих матрицу. В этом смысле стекла можно рассматривать, как неравновесные системы, в которых может сформироваться периодическая структура. Известно, что стекла самопроизвольно кристаллизуются в течение длительного периода (в несколько сотен лет). [c.120]

    При решении задач анализа ХТС структурные блок-схемы позволяют определить эквивалентный коэффициент передачи (или эквивалентную матрицу преобразования) системы в целом. [c.49]

    Итак, каждому молекулярному виду ставится в соответствие М-мерный вектор ац (А = 1, 2,. . ., ТУ) структурной матрицы А, [c.449]

    Линейная зависимость 1пЛг от (1/Т), соответствующая постоянству энергии активации диффузии, нарушается в области структурных превращений в мембранной матрице. Установлено, что переход аморфной фазы в упорядоченную сопровождается [c.86]

    Математическая модель ХТС может быть получена объединением матриц преобразования отдельных технологических операторов в соответствии с технологической топологией и структурной блок-схемой системы. Такой подход к анализу функционирования или полному расчету ХТС позволяет получить решенпе безытерацион-ным методом и сочетает в себе точность и возможность полной формализации расчетных процедур. [c.103]

    На структурной блок-схеме ХТС каждый технологический оператор изображают в виде блока, математическая модель которого представляет собой матрицу преобразования этого ТО, а связь между блоками осуществляется векторами параметров состояния соответствующих технологических потоков системы. [c.103]

    Результаты, пoлyqeнныe в 22, позволяют провести теоретический анализ структуры зон Гинье — Престона, которые мы будем рассматривать как когерентные выделения новой фазы в кубической матрице при изоструктурном распаде (расслоении). В последнем случае выделения новой фазы в ненапряженном состоянии также являются кубическими. Они имеют параметр кристаллической решетки, отличный от параметра матрицы. Структурная деформация такого фазового превращения есть чистая дилатация  [c.234]

    Многочисленные вариации рассмотренного подхода составляют методы, основанные на понятии максимального механизма реакции [10, И]. Под максимальным понимается механизм1 для которого матрица стехиометрических коэффициентов стадий получается объединением матриц 2 = Ргг > найденных с помощью уравнения (1.2) для каждого из максимальных миноров заданной молекулярной матрицы А структурных видов Mf. [c.177]

    Если для исследуемой ХТС символические математические модели элементов заданы в форме матриц преобразования и общее число элементов системы невелико, то анализ функционироваиия ХТС целесообразно проводить путем расчета математической модели системы, представленной в виде эквивалентной матрицы преобразования, Эквивалентную матрицу преобразования ХТС получают путем применения теории матричного исчисления и алгоритмов преобразования матричных структурных блок-схем ХТС. [c.96]

Рис. VII-II. Матрица предварительных возможных варнавтов объединения энергетических потоков при построении структурных схем ректификационных систем для разделения пяти-компонентной смеси AB DE. Рис. VII-II. Матрица предварительных возможных варнавтов <a href="/info/1791465">объединения энергетических</a> потоков при <a href="/info/1476889">построении структурных</a> <a href="/info/28472">схем ректификационных</a> систем для разделения пяти-компонентной смеси AB DE.
    Система (8.16) получается в результате выбора в структурной матрице А адекватной невырожденной подматрицы (определитель которой отличен от нуля) и перенумерации строк и столбцов матриц А ш В таким образом, чтобы индексы пробегали значения от единицы до г (А). Для нахождения всех стехиометрически простых решений необходимо определить базисные решения для каждой невырожденной подматрицы матрицы А порядка г (Л). Нетрудно заметить, что для различных г (независимых реакций) в системе (8.16) изменяется лишь правая часть, что облегчает процедуру решения систем линейных алгебраических уравнений для различных подматриц. В процессе синтеза может оказаться, что некоторые получаемые реакции химически неправдоподобны. Естественно, что такие необходимо исключать на всех этапах. [c.451]

    Получение эквивалентной матрицы преобразования значительно упрощает исследование сложных систем, так как позволяет формализовать задачу расчета ХТС произвольной структуры и свести ее к безытерационному решению системы линейных уравнений путем применения аппарата теории матриц к рассмотрению иконографической математической модели ХТС в виде структурной блок-схемы. [c.103]


Смотреть страницы где упоминается термин Матрица структурная: [c.450]    [c.327]    [c.23]    [c.311]    [c.40]    [c.83]    [c.46]    [c.449]    [c.451]   
Многокомпонентная ректификация (1983) -- [ c.20 , c.31 ]

Обнаружение и диагностика неполадок в химических и нефтехимических процессах (1983) -- [ c.282 ]




ПОИСК





Смотрите так же термины и статьи:

Матрица



© 2025 chem21.info Реклама на сайте