Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектроскопия ядерного магнитного релаксация

    В значительной мере указанные трудности удается преодолевать за счет интенсивного использования радиоспектроскопических методов, возможности которых непрерывно совершенствуются. Поэтому в данном разделе основное внимание уделено изложению возможностей, перспектив и основных результатов использования в химии комплексонов спектроскопии ЯМР высокого разрешения, электронного парамагнитного резонанса и ядерной магнитной релаксации [c.415]


    Использование спектроскопии ядерного магнитного резонанса (ЯМР) как критерия ароматичности уже обсуждалось (см. гл. 2.4). Относительно большие времена релаксации ароматических ядер и наличие в той же области химических сдвигов сигналов С олефинов затрудняют точные структурные отнесения для ароматических систем при использовании спектроскопии ЯМР С, если только не имеется подходящих модельных соединений [7]. Химический сдвиг ядер бензола равен 128,5 м. д. (относительно тетра-метилсилана), а для класса аренов в целом химические сдвиги лежат в области ПО—170 м. д. Теоретическая обработка химических сдвигов ароматических систем проведена достаточно полно, и имеются сводные данные 1Ю влиянию заместителей на химиче-сдвиги С в замещенных бензолах. [c.321]

    Современные методы исследования, в частности инфракрасная спектроскопия и метод ядерной магнитной релаксации, позволили получить новые данные о механизме взаимодействия воды с катионами и анионами и молекул воды между собой. [c.64]

    Спектроскопия ядерного магнитного резонанса. Для расчета констант устойчивости могут быть использованы следующие три параметра, получаемые из спектров ЯМР химический сдвиг, константы спин-спинового взаимодействия и время релаксации в присутствии парамагнитных ионов. Наиболее часто используются первые два параметра. [c.148]

    О подвижности адсорбированных молекул на поверхности можно получить сведения, измеряя времена их ядерной магнитной релаксации методами импульсной спектроскопии ЯМР [3]. [c.420]

    Желание понять структурные, функциональные и динамические факторы, характеризующие поведение воды на поверхности белка и других поверхностях, а также их взаимосвязи стимулирует интерес исследователей к этой проблеме. Спектроскопия ядерного магнитного резонанса позволяет получить информацию как о структуре, так и о динамике процессов взаимодействия. В настоящей работе внимание сосредоточено на динамических аспектах взаимодействия воды с белком. Особенно подробно обсуждено явление перекрестной релаксации между протонами воды и белка и приведены новые доказательства существования этого процесса. Непонимание значения перекрестной релаксации приводит к неправильным заключениям относительно динамики воды на белковых поверхностях. [c.149]


    Качество полимерного материала характеризуется совокупностью его свойств, определяющих пригодность материала для использования в тех или иных целях. Современный уровень экспериментальной техники позволяет описать свойства материала на всех уровнях атомно-молекулярном (фотоэлектронная, рентгеноэлектронная и колебательная спектроскопия, ядерный магнитный резонанс, рассеяние нейтронов, эмиссионный анализ и т. д.) надмолекулярном (диэлектрическая и механическая релаксация, рентгенография, электронография, аннигиляция позитронов, рас- [c.327]

    Ядерный магнитный резонанс оказался мощным и гибким методом изучения процессов химического обмена. Большая часть имеющихся у нас современных данных о динамических процессах в химии и биологии получена благодаря исследованиям с помощью ЯМР [9.32, 9.33]. В зависимости от диапазона скоростей могут быть использованы различные методики, начиная с изучения времен релаксации и кончая анализом формы линии и экспериментами по переносу намагниченности. Обменная 2М-спектроскопия имеет много общего с одномерными экспериментами по переносу поляризации (см. разд. 4.6.1.4), и она наиболее подходит для изучения медленно- [c.621]

    Методы, которые дают информацию о У-структуре, — это методы, использующие излучение или частицы, которые взаимодействуют с жидкостью только в течение короткого периода времени и обмениваются регистрируемой долей своей эиергии с молекулами в жидкости. Инфракрасная и рамановская спектроскопия так же, как и неупругое рассеяние нейтронов, удовлетворяет этим требованиям и является главным источником информации о У-структуре жидкости (рис. 4.2). Рассеяние нейтронов дает информацию о промежутках времени продолжительностью 10 " с. Поскольку это время совпадает с периодом Тп, рассеяние нейтронов является полезным методом исследования природы перемещения временных положений равновесия. Исследования релаксации диэлектрической поляризации и ядерного магнитного резонанса применяются для определения среднего времени между перемещениями. Порядок, в котором ниже рассматриваются свойства воды, основан на временном масштабе, о котором дают информацию указанные методы. [c.159]

    В настоящей главе рассматриваются -спектральные методы исследования полиолефинов инфракрасная спектроскопия, метод ядерного магнитного резонанса, измерение механических и диэлектрических потерь. Все эти методы позволяют исследовать такие процессы в полимере, как колебания атомов и их групп и конфор-мационные превращения макромолекул. Поэтому везде, где это возможно, мы будем стараться объяснять экспериментальные факты особенностями молекулярного строения исследуемого полимера. Различные спектральные методы позволяют по-разному подойти к выяснению особенностей данного полимера и имеют, в сущности, очень мало общего. В соответствии с классической теорией методы инфракрасной спектроскопии и ядерного магнитного резонанса относятся к так называемым резонансным методам, а измерения механических и диэлектрических потерь связаны с явлениями релаксации или запаздывания. Общим между различными методами является то, что воздействие на исследуемый материал фактора X приводит к возникновению реакции этого материала, выражаемой фактором X. Если X изменяется по гармоническому закону, то и л изменяется по такому же закону, но в общем случае с отставанием по отношению к изменению X. Это положение может быть записано следующим образом  [c.279]

    Все эти методы и возможности в настоящий момент далеко не исчерпаны. Исследование в скрещенных атомно-молекулярных пучках, распространение импульсной спектроскопии на новые области спектра, создание новых, еще более совершенных радикальных масс-спектрометров с магнитной модуляцией, повышение чувствительности спектрометров ЭПР и проведение исследований времени релаксации, использование ядерного магнитного резонанса для измерения слабых взаимодействий свободных радикалов со средой, развитие хроматографии для детального изучения кинетики накопления продуктов радикальных реакций — таков далеко не полный список новых путей подхода к исследованию радикалов. Вопрос же о роли радикалов в биологических процессах еще по-настоящему даже не поставлен. [c.24]

    Ядерный магнитный резонанс, или ЯМР-спектроскопия,— метод, который был заимствован у физики и химии, позволяет изучать свойства воды нормальных и трансформированных клеток и тканей. Прежде чем рассматривать данные о трансформированном состоянии клеток, полученные с помощью этого метода, в следующем разделе будет представлено объяснение принципов, лежащих в его основе. Будет сделана попытка объяснить, как значения продолжительности времен релаксации Tj и характеризуют состояние воды в клетках и скорость вращения ее молекул. [c.271]


    Магнитный резонанс признан уникальным методом для изучения диссипативных динамических процессов, таких, как химический обмен или кросс-релаксация [1.69—1.71]. Двумерная спектроскопия дала новый импульс в этой области и оказалась особенно успешной для наглядного отображения пути кросс-релаксации, ядерных эффектов Оверхаузера, спиновой диффузии и медленного химического обмена [1.102—1.104]. [c.28]

    В заключение следует остановиться еще на одном аналитическом аспекте метода ЯМР. Как уже отмечалось, ядерная магнитная релаксация является фундаментальным свойством ядерного магнетизма, характеризующим динамику системы спинов. Вместе с тем высокая информативность параметров ядерной магнитной релаксации о свойствах исследуемого вещества, сравнительная простота их экспериментального определения, а также надежность теоретической интерпретации данных дают основание выделить это направление ЯМР в качестве самостоятельного физического метода исследования вещества — ядерную магнитную релаксационную спектроскопию, некоторые интересуюп ие нас особенности которой описаны в 5. [c.738]

    Это обусловливает необходимость создания и внедрения методов контроля качества сырья, материалов и готовых изделий, что является важным условием развития производства полимеров. Качество полимерного материала характеризуется совокупностью его свойств, определяющих пригодно материала для использованм в тех или иных целях. Современный уровень экспериментальной техники позволяет описать свойства материгша на всех у ювнях атомномолекулярном (фотоэлектронная, рентгеновская, электронная и колебательная спектроскопия, ядерный магнитный резонанс, рассеяние нейтронов, эмиссионный анализ и т.д.) надмолекулярном (диэлектрическая и механическая релаксация, рентгенография, электронография, анш гиляция позитронов, рассеяние синхротронного излучения и т.д.) макроскопическом (вязкость, прочность, удлинение при разрыве, сопротивление изгибу, электрическому пробою и т.д.). [c.22]

    Кроме обычной ЯКР-спектроскопии существует ряд других экспериментальных методов исследования, которые позволяют получить сведения о ядерном квадрупольном взаимодействии. К их числу следует отнести ЯМР-спектроскопию, которая дает возможность измерять константу ядерного квадрупольного взаимодействия e Qq в твердых телах (см. разд. II, Б, 2). В благоприятных случаях величину удается определить и для жидких образцов по времени ядерной магнитной релаксации [27, 28]. Гартман и Ган [29] использовали для определения величины ядер с очень низким естественным содержанием двойной ядерный резонанс при этом в исследуемом образце одновременно присутствуют ядра того же элемента с высоким естественным содержанием, от которых получают сильный сигнал (например, в случае ядер К в КСЮз). Иногда удается определить величину и даже знак e Qq по сверхтонкой структуре спектров ЭПР [30]. Метод двойного электронно-ядерного резонанса (Еп(1ог) [30] дает возможность лучше разрешить и точнее измерить сверхтонкое расщепление, а следовательно, и получить более точное значение e Qq. Для свободных молекул величину e Qq можнс определить по вращательным спектрам газообразных веществ [31]. В случае легких атомов и молекул с малым молекулярным весом для определения величины e Qq применяется метод молекулярных или атомных пучков [32]. Следует отметить, что сам эффект ядерного квадрупольного взаимодействия был открыт Шюлером и Шмидтом [33 при исследовании очень малых сдвигов в сверхтонкой структуре оптических спектров. Существует еще несколько методов экспериментального исследования ядерного квадрупольного взаимодействия, которые относятся к области ядерной физики. Широко известным примером такого рода является -(-резонансная, или мес- [c.220]

    Из современных методов структурных исследований спектроскопия ядерного магнитного резонанса (ЯМР) оказалась наиболее полезной при исследовании процессов сольватации и связанных с ней эффектов [174а, 262а, 345]. Основным источником информации в методе ЯМР является величина химического сдвига магнитных ядер исследуемой системы и соответствующие константы взаимодействия. Измерения времен спин-решеточной и спин-спиновой релаксации также дают ценные сведения о поведении системы. [c.119]

    Почему была переведена именно эта монография На русском языке имеется довольно много книг по ядерному магнитному резонансу. Однако все они (за исключением перевода монографии А. Бакса Двумерный ядерный магнитный резонанс в жидкости , который был выпущен в 1988 г. очень малым тиражом Сибирским отделением изд-ва Наука ) обсуждают методы одномерной спектроскопии. Между тем в последние годы стала весьма плодотворно развиваться двумерная и трехмерная ЯМР-спектроскопия. Такое расширение пространства, в котором изображается спектр, позволило принципиально повысить разрешение спектров ЯМР, однозначно соотносить линии сложных спектров, непосредственно устанавливать связи между спинами, рассмотреть процессы химического обмена, кросс-релаксацию и т. д. Монография известных швейцарских ученых Р. Эрнста, Дж. Боденхаузена и А. Вокауна является первой в мировой литературе, в которой с единых позиций излагаются основы и применения импульсных методов ЯМР, как одномерных, так и двумерных. [c.5]


Смотреть страницы где упоминается термин Спектроскопия ядерного магнитного релаксация: [c.291]    [c.521]    [c.237]    [c.131]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.212 , c.214 ]




ПОИСК





Смотрите так же термины и статьи:

Магнитная спектроскопия

Спектроскопия ядерного магнитного

Спектроскопия ядерного магнитного время релаксации

Спектроскопия ядерного магнитного поперечная релаксация

Спектроскопия ядерного магнитного продольная релаксация

Спектроскопия ядерного магнитного спин-решеточная релаксация

Спектроскопия ядерного магнитного спин-спиновая релаксация



© 2025 chem21.info Реклама на сайте