Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цитозин синтез

    Нуклеиновые кислоты содержатся в каждой живой клетке. ДНК служит носителем генетической информации. Это обусловлено тесной связью между двумя витками спиралей нуклеиновых кислот, которая основана на очень специфических водородных связях между адениновым (А) остатком одного витка и тиминовым (Т) остатком другого витка, который расположен строго напротив первого, а также между цитозиновым (Ц) остатком одного витка и гуаниновым (Г) остатком другого. Такое образование пар абсолютно специфично аденин не может образовывать мультивалентные водородные связи с гуанином или цитозином, а цитозин не может образовывать связи с тимином или аденином. Изумительно, что вся наследственность и эволюция зависят от двух групп водородных связей Генетический код для синтеза определенной аминокислоты обус- [c.578]


    Особенностью т-РНК является то, что на одном конце цепочки, содержащей всего 80 нуклеотидов, всегда помещается группа из трех частиц двух цитозина и одной аденина на другом конце находится гуанин. Водородные связи между основаниями обусловливают скручивание отдельных участков цепи в двойную спираль. Свободные нуклеотиды взаимодействуют с матрицей, на которой закрепляется совокупность аминокислот во время синтеза белка. Существование таких свободных нуклеотидов, возможно, связано с наличием в т-РНК пуриновых или пиримидиновых оснований, [c.391]

    Все синтезируемые в процессе трансляции белки построены из остатков 20 аминокислот (т. наз. кодируемых). Какой именно кодон ответствен за включение той или иной аминокислоты, можно определить по таблице, в к-рой буквы А, Г, У, Ц обозначают основания, входящие в нуклеотиды (соотв. аденин, гуанин, урацил, цитозин) в вертикальном ряду слева-в первый нуклеотид кодона, в горизонтальном ряду сверху-во второй, в вертикальном ряду справа-в третий. Трехбуквенные сочетания, напр, фен, сер, лей,-сокращенные назв. аминокислот. Прочерки в таблице означают, что три кодона-УАА, УАГ и УГА в нормальных условиях не кодируют к.-л. аминокислоты. Такие кодоны наз. бессмысленными , или нонсенс-кодонами. Оии являются сигналами остановки синтеза полипептидной цепи. [c.518]

    Хотя строение ртутного производного цитозина до сих пор остается еще недостаточно ясным (условно его можно принять за LIX), тем не менее его удалось использовать для синтеза природного цитидина (VII) который протекает по схеме  [c.207]

    Взаимосвязаны либо только рибонуклеотиды, либо дезокси-рибонуклеотиды, которые образуют соответственно РНК (рибонуклеиновую кислоту) или ДНК (дезоксирибонуклеиновую кислоту). В состав молекулы ДНК входят два пуриновых основания— аденин (А) и гуанин (Г), а также два пиримидиновых основания — цитозин (Ц) и тимин (Т). В молекуле РНК вместо тимина находится урацил (У). Следующие друг за другом три азотистых основания или мононуклеотиды в полинуклеотидных цепях РНК или ДНК образуют триплеты, которые соответствуют какой-либо из аминокислот в молекуле белка, а также определяют ее место в цепи аминокислот, образующих белок. Таким образом, последовательность аминокислот в молекуле белка определяется последовательностью триплетов в молекуле ДНК и РНК Каждый триплет является единицей информации для синтеза белков. Каждая аминокислота кодируется несколькими триплетами. Так, аланин кодируется четырьмя триплетами — АУЦ, ГЦУ, ГЦЦ и ГЦГ. Такая возможность вытекает из того, что число комбинаций из четырех нуклеотидов равно 64 (4 = 64), а аминокислот всего 20. [c.43]

    В ДНК в форме специфической последовательности Т, А, С и G закодирована аминокислотная последовательность всех клеточных белков. Кодирование осуществляется триплетами из тимина, аденина, цитозина и гуанина. Три основания (кодон) кодируют одну аминокислоту. Тем самым ДНК действует как матрица для синтеза белков в клетке. Определенные участки ДНК (гены) ответственны за то или иное действие в клетке. Каждая клетка содержит полный набор информации для строительства своих белков, ферментов. [c.719]


    Синтез белка включает перенос информации (транскрипцию) от ДНК к молекуле РНК, которая синтезируется на ДНК-матрице и комплементарна данной части цепи ДНК — гену. Эта информационная, или матричная, РНК точно отражает последовательность нуклеотидов в определенной части ДНК. Так, информационная РНК содержит остатки аденина там, где ДНК содержит тимин, остатки цитозина там, где в ДНК гуанин. [c.719]

    Как было указано, стрептомицины нарушают синтез белка на уровне 30S рибосом. Если эти последние диссоциировать в градиенте плотности хлористого цезия на кор-частицы (16S РНК + 15 белков) и на отделяющиеся белки (6 белков), то при реассоциации 30S рибосом доказано, что чувствительность к антибиотикам определяется кор-частицами. Каждая рибосома может связывать 1...2 молекулы антибиотика в присутствии ионов магния и уридин- или цитозин-содержащих полинуклеотидов. При этом отмечается не только ошибочное считывание [c.189]

    КОВ являются ферментами, необходимыми для производства клеткой веществ, требующихся для построеш1я фага. Например, так называемые Т-четные фаги (Tj, Т4, Т ) содержат оксиметнл-цитозин вместо цитозина. Синтез этого нового основания требует ряда новых ферментов (например, оксиметилазы цитозина), которые в нормальной клетке полностью отсутствуют. Кроме того, клетка должна синтезировать сами белки оболочки вируса. Таких белков в сложных бактериофагах имеется несколько. Во всяком случае бактериофаг, как и любой вирус, не может размножаться, если все необходимые белки не будут синтезированы. [c.499]

    Представление о строении нуклеиновых кислот нуклеозиды и нуклеотиды. Гетероциклические основания, рибоза (дезоксирибоза) и фосфорная кислота как структурные единицы нуклеиновых кислот. Представление о строении РНК и ДНК. Биологические функции ДНК и РНК. Рибосомальные, информационные и транспортные РНК. Связь между строением и биологическими функциями нуклеиновых кислот. Двойная спираль как модель молекулы ДНК. Роль водородных связей аденин — тимин и гуанин — цитозин в образовании двойной спирали. Правило Ча )-гаффа. Проблема передачи наследственной информации. Вещество, энергия и информация — необходимые компоненты при синтезе белка. Гснетическин код как троичный неперекрывающийся вырожденный код. [c.249]

    Состав оснований РНК значительно шире, чем состав ДНК (см. гл. 22.4). В ранних работах по первичной структуре РНК был сделан вывод о том, что четыре основных гетероциклических основания— аденин, цитозин, гуанин и урацил, связаны с )-рибозой образуя четыре рибонуклеозида — гА (3), гС (4), гО (Б) и ги (6), соответственно. Положение гликозидной связи, приписанное первоначально на основании данных УФ-спектроскопии [16], было окончательно подтверждено полным химическим синтезом схема (6) [49]. Показано, что атомы N-9 аденина и С-1 рибозы связаны гликозидной связью, а рибоза существует в фуранозной форме, что уже ранее было установлено по отсутствию образования муравьиной кислоты при периодатном расщеплении цис-глт-кольной группировки [50]. р-Конфигурация гликозидной связи подтверждена превращением 2, 3 -0-изопропилиден-5 -0-тозиладенози-на (40) в циклонуклеозид (41) [51] схема (7) . [c.55]

    Буквы А, Г, У, Ц в таблице обозначают основания РНК — соотв, аденин, гуанин, урацил, цитозин буквенные обозначения аминокислот (напр., фен, сер, лей) см. в ст. а-Амино-кислиты. Амбер , - охра , <опал — обозначения <бес-смыс,тенных кодонов, к-рые не кодируют аминокислоты, а служат сигналами окончания синтеза полипептидной цеии. Первое основание кодона обозначается буквами в вертикальном ряду слева, второе — в горизонтальном ряду сверху, третье — в вертикальном ряду справа. Реализация ] к, происходит в два этапа транскрипции н трансляции,. а ра<шифровку генетич. кода X. Г. Коране и М. У. Ни-рен( ср1у и 1 168 присуждена Нобелевская премия. [c.125]

    В клетках (как и в пищеварительном канале) нуклеиновые кислоты постоянно подвергаются атаке со стороны различных нуклеаз. Например, существенным фактором в регуляции синтеза белков является разрушение— как правило, довольно быстрое — информационных РНК-Хотя ДНК сама по себе очень устойчива, нуклеазы призваны вырезать поврежденные сегменты из одиночных цепей, что является важной частью процесса репарации ДНК (гл. 15, разд. 3,2). Таким образом, наблюдается активное расщепление полинуклеотидов на мононуклеотиды, гидролизуемые далее фосфатазами до нуклеозидов. Нуклеозиды превращаются в свободные основания под действием нуклеозидфосфорилаз [уравнение (14-52)]. Дальнейший распад цитозина начинается его де- [c.166]

    Результаты многочисленных исследований свидетельствуют о том что генетический код, установленный для Е. соИ, является универсальным. Так, например, в лабораториях Уитмана и Френкель-Конрата препарат РНК, экстрагированный из вируса табачной мозаики, обработали азотистой кислотой известно, что при этом происходит дезаминирование многих остатков цитозина с образованием урациловых остатков, в результате чего кодоны U U (серин) превращаются в UUU (фенилаланин). Аналогичным путем из кодона ССС (пролин) может образоваться СиС (лейцин). Оказалось, что при заражении растений табака препаратом РНК, обработанной азотистой кислотой, аминокислотная последовательность вирусного белка оболочки, выделенного из мутантных штаммов, действительно меняется [22]. Причем многие из происшедших изменений можно было точно предсказать исходя из данных, приведенных в табл. 15-3. Сходным образом, замены аминокислот в дефектных молекулах гемоглобина (рис. 4-17) в большинстве случаев могут быть обусловлены изменением только одного основания. Так, гемоглобин S может образовываться в результате одного из следующих изменений в седьмом кодоне GAA(Glu) GUA(Val) или GAG(Glu)- ->GUG(Val). Еще один аргумент в пользу универсальности генетического кода состоит в способности рибосом и молекул тРНК из Е.соН осуществлять трансляцию цепи мРНК, кодирующей синтез гемоглобина, и синтезировать при этом полноценный гемоглобин [23]. [c.195]


    Т 2, Т4 и Тб) вместо цитозина входит оксиметилцитозин, большин-ст во остатков которого к тому же еще глюкозилированы. ДНК, мо-ди фицированную подобным образом, не разрезают почти все известные рестриктазы. Такой способ борьбы с рестрикцией могут позволить себе лишь крупные фаги, поскольку для этого фаг должен кодировать фактически новый метаболический путь синтеза необычных нуклеотидов, а также новые ферменты синтеза ДНК, адаптированные к необычным свойствам фаговой матрицы и к использованию необычного субстрата. Зато столь радикальная модификация ДН К позволяет фагам, использующим эту тактику, не только защищаться от хозяйских рестриктаз, но и пойти дальше они коди-р уют нуклеазы, деградирующие немодифицированную ДНК хозяина, но не действующие на фаговую ДНК. Другие фаги используют еще ряд способов борьбы с системой рестрикции хозяина. [c.133]

    Вещества, загрязняющие окружающую среду, азотистая кислота и SOs могут способствовать дезаминированию цитозина в урацил схема (7) . Такая модификация, как видно из рассмотрения генетического кода (см. табл. 22.5.1) может иметь три вида последствий на синтез белка. Во-первых, замены С на U в третьей позиции кодового слова не будут оказывать влияния на включение аминокислот во всех 16 случаях. Во-вторых, замена С на U в первой позиции кода может заменить кодон САА (глутамин) на кодон UAA (Стоп) и, таким образом, привести к преждевремен ному окончанию синтеза отдельного белка. В равной мере, замена AU (гистидин) на UAU (тирозин) может заменить каталитически активный остаток аминокислоты на неактивный. Для белка, играющего в клетке жизненноважную роль, обе такие замены будут летальными нет потомков, которые могли бы пережить репликацию модифицированной таким образом цепи ДНК. В-третьих, некоторые из таких замен могут вводить аминокислоту с функцио  [c.212]

    Для синтеза ФАД из ФМН (в виде натриевой соли) и АМФ в качестве конденсирующего средства был применен трифторуксусный ангидрид [410]. Реакция протекает в результате атаки трифторуксусного ангидрида фосфатным анионом с образованием промежуточного ангидрида, который, взаимодействуя со вторым фосфатным анионом, образует Р ,Р2-(динуклео-зид-5 )пирофосфат. Этим методом можно получать значительные количества ФАД, однако выход вещества невысокий ( 10%). Из ФМН и соответствующих нуклеозид-5 -фосфатов с применениел трифторуксусного ангидрида были получены аналоги ФАД, содержащие вместо аденина урацил, цитозин, гуанин [410] и никотинамид [410, 4111. [c.557]

    Молекула ДНК состоит из двух антипараллель-ных полинуклеотидных цепей, образующих двойную спираль. Их мономерной единицей является нуклеотид, который состоит из азотистого основания, дезоксирибозы и фосфатной группы. Соседние нуклеотиды в цепи связаны фосфодиэфирными связями, а цепи удерживаются вместе с помощью водородных связей, образующихся между комплементарными основаниями. При этом аденин образует водородные связи только с ТИМИНОМ, гуанин - только с цитозином. Процесс удвоения ДНК называется репликацией. В нем участвует множество различных белков, прежде всего ДНК-полимеразы. Каждая из цепей ДНК служит матрицей для синтеза комплементарной цепи. Комплемен-тарность оснований противоположных цепей гарантирует идентичность новосинтезирован-ной и исходной ДНК. [c.47]

    Замещение атомов хлора на оксигруппы может быть проведено путем нагревания с водой, как в синтезах цитозина и изоцитозина, описанных ранее. Более удобный способ состоит в превращении хлорпиримидина путем обработки алкоголятом натрия в алкоксипиримидин с последующим гидролизом продукта реакции концентрированной соляной кислотой [180]. [c.220]

    Идентичность образующихся при дупликации молекул ДНК обеспечивается выполнением принципа ком-тементарности, требующего однозначности связей между азотистыми основаниями. Например, цитозин является единственным основанием, которое может быть связано с гуанином, и наоборот. Однако изредка в процессе дуплицирования могут происходить мутации, при которых возникают запрещенные связи, например гуанин— тимин. Такие мутации неблагоприятны, поскольку они могут произойти в гене, управляющем синтезом какого-то жизненно важного для клетки фермента. Мутация, при которой функционирование поврежденного гена будет губительно и быстро приведет к гибели клетки, называется летальной мутацией. Если мутация не слишком сильна и не является губительной, то все равно мутантная клетка оказывается в неблагоприятных условиях для размножения, и ее потомство гибнет. [c.40]

    Известно большое число пиримидинов, имеющих в качестве заместителей алкилмеркаптогруппы. Значение этих групп в химии пиримидина связано с их использованием в качестве инертных заместителей в одном или нескольких реакционноспособных положениях пиримидинового кольца на любой стадии синтеза алкилмеркаптогруппы могут быть замещены другими группами. Наглядной иллюстрацией сказанномуслужит синтез цитозина по Вилеру и Джонсону [253]  [c.231]

    Информация, заложенная в ДНК и РНК, реализуется в процессе синтеза белка. Механизмы передачи информации от ДНК на РНК понятны и очевидны, так как цепь нуклеотидов характерна для обеих структур, а матричный синтез предусматривает полную идентичность их последовательностей. Но каким же образом передается информация от РНК, содержащей всего четыре нуклеотида, на белок, содержащий 20 различных аминоьсислот Если бы каждый нуклеотид передавал информацию на синтез одной аминокислоты, то всего кодировалось бы 4 аминокислоты. Не может код состоять из двух нуклеотидов, так как в этом случае можно было бы охватить не более 16 аминокислот (4 = 16). Работами М. Ниренберга и соавторов было установлено, что для кодирования одной аминокислоты требуется не менее трех последовательно расположенных нуклеотидов, называемых триплетами или кодонами. При этом между отдельными кодонами нет промежутков, и информация записана слитно, без знаков препинания. Число сочетаний 4 дает основание полагать, что 20 аминокислот кодируются 64 кодонами. Экспериментально установлено, что таких кодонов меньше, всего 61. Оставшиеся три кодона не несут в себе информации, однако два из них используются в качестве сигналов терминации. Выявлена также интересная особенность взаимодействия кодона с антикодоном. Оказалось, что первое и второе азотистые основания кодона образуют более прочные связи с комплементарными основаниями антикодона. Что же касается третьего основания, то эта связь менее прочная, более того, основание кодона может спариваться с другим, не комплементарным основанием антикодона. Этот феномен называют механизмом неоднозначного соответствия или качания. В соответствии с этим урацил антикодона может взаимодействовать не только с аденином, но и с гуанином кодона. Гуанин антикодона способен связываться не только с цитозином, но и с урацилом кодона. Это указывает на возможность нескольких кодонов кодировать одну и ту же аминокислоту. И действительно, было установлено, что ряд аминокислот кодируется двумя и более антикодонами (табл. 29.1). Из таблицы видно, что только две аминокислоты — метионин и триптофан — кодируются при помощи одного кодона. Число кодонов для остальных аминокислот варьирует от двух (для аргинина, цистеина и др.) до шести (для лейцина и серина). Тот факт, что одной и той же аминокислоте соответствует несколько кодонов, называется вырожденностью [c.462]

    Каждый из синтезов, представленных на рис. 7.4, может быть осуществлен на практике. Взаимодействие тиомочевины с ацетила-цетоном в концентрированной соляной кислоте при кипячении приводит к 4,5-диметилтиопиримидону-2 (рис. 7.4, а). Синтезы, соответствующие схемам б и в на рис. 7.4, проводят при кипячении реагентов с этилатом натрия в этаноле [12—14]. Этот синтетический подход к пиримидиновой системе позволяет получать различные производные. На рис. 7.5 приведены примеры синтезов урацила [15] и цитозина [16]. В обоих случаях в качестве азотсодержащего фрагмента используют мочевину. Аналогичный метод синтеза пиримидина приведен в гл. 4, табл. 4.6. [c.307]

    Нуклеиновые кислоты представляют собой линейные полимерные молекулы, состоящие из чередующихся углеводных и фосфоди-эфирных остатков. Фрагменты углеводов существуют в молжулах нуклеиновых кислот в- фураиозиой форме и связаны по атому С-1 с остатками пиримидиновых или пуриновых оснований (общее рассмотрение структуры нуклеиновых кислот см. [45]). Дезоксирибонуклеиновая кислота (ДНК) присутствует во всех живых клетках и служит носителем генетической информации. В качестве углеводного остатка в молекуле ДНК присутствует о-дезоксирибоза, а в качестве оснований — тимин. цитозин (пиримидиновые основания) и аденин, гуанин (пуриновые основания) (рис. 7.14, а). Определенная последовательность расположения пиримидиновых и пуриновых оснований в цепи ДНК связана с конкретной генетической информацией. Рибонуклеиновые кислоты (РНК) также представляют собой неразветвлеиные полимерные молекулы, отличающиеся от молекул ДНК тем, что содержат вместо дезоксирибозы о-рибозу (с группой ОН при атоме С-2) и урацил вместо тимина. РНК выполняют роль матриц для синтеза белка. [c.317]

    Цитозин (2-окси-4-аминопиримидин, или 2-кето-4-иминотетрагидро-пиримидин) превращается при действии азотистой кислоты в урацил. Один из синтезов цитозина был изображен выше. [c.759]


Смотреть страницы где упоминается термин Цитозин синтез: [c.112]    [c.463]    [c.133]    [c.14]    [c.302]    [c.411]    [c.180]    [c.139]    [c.89]    [c.219]    [c.232]    [c.257]    [c.219]    [c.232]    [c.257]    [c.200]    [c.105]    [c.343]    [c.124]    [c.124]   
Химия природных соединений (1960) -- [ c.180 , c.181 ]

Химия биологически активных природных соединений (1970) -- [ c.331 ]




ПОИСК





Смотрите так же термины и статьи:

Цитозин



© 2025 chem21.info Реклама на сайте