Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм каталитического крекинга углеводородов нефти

    В связи с изложенными результатами было целесообразно исследовать влияние температуры на реакцию взаимодействия между этиле-ном.и дейтерием на неметаллических поверхностях. Выбор в качестве твердых поверхностей природной (диатомит) и синтетической (силикагель) двуокиси кремния обусловлен тем, что они широко используются в промышленных каталитических процессах диатомит — в качестве носителя главным образом для катализаторов гидрирования (и прежде всего гидрирования окиси углерода) силикагели — как компоненты алюмосиликатных катализаторов крекинга углеводородов нефти. Естественно, что изучение особенностей взаимодействия дейтерия с этиленом на диатомите и силикагелях существенно поэтому и для выяснения механизма синтеза и крекинга углеводородов на указанных катализаторах сложного состава. Методика исследования дейтерообмена, масс-спектрального анализа продуктов, расчет спектра масс описаны в [13] и [14]. [c.451]


    В этом разделе мы рассмотрим вопросы термодинамики, химизма и механизма превращений углеводородов в ряде процессор тер.мической и термокаталитической переработки нефти, а имеилО в процессах пиролиза, термического крекинга, каталитического крекинга, гидрокрекинга и риформинга, а также в процессах изомеризации, алкилирования и ступенчатой полимеризации углеводородов, [c.110]

    В качестве наиболее типичного примера реакций, протекающих по механизму общего кислотного катализа, являются каталитические превращения углеводородов нефти, имеющие место в таких важных в нефтепереработке процессах, как каталитический крекинг, изомеризация и алкилирование. [c.427]

    Крекинг газойля. Основная область применения цеолитных катализаторов в промышленности связана с процессом каталитического крекинга дистиллятов первичной перегонки нефти, содержащих алифатические, циклоалифатические (нафтеновые), олефиновые и ароматические углеводороды. При каталитическом крекинге нефтяных фракций протекают реакции дезалкилирования ароматических соединений, крекинга парафинов и олефинов, перераспределения водорода и циклизации олефинов. С основными представлениями о механизмах реакций, которые вносят вклад в процесс крекинга нефтяного сырья на цеолитных катализаторах, мы уже познакомились в предыдущих разделах этой главы. Однако использовать эти представления для анализа превращений отдельных классов углеводородов в крекинге все-таки очень трудно, так как продукты крекинга отличаются очень сложным составом. Первые работы Планка и Росин-ского [161, 297] по крекингу газойля, выкипающего в интервале 260—400° С, показали, что замена алюмосиликатного катализатора на цеолиты типа X дает следуюгцие преимущества 1) более высокую активность, которая сохраняется даже при повышенных содержаниях остаточного кокса, 2) более высокую селективность по бензину (Сз+) и снижение выхода газа (С4-) и кокса, 3) более высокую стабильность при термических и термопаровых обработках, характерных для процесса регенерации катализатора. Эти преимущества становятся еще более заметными при использовании в качестве катализаторов кальций-аммонийной и редкоземельно-аммонийной форм цеолита X. Моску и Моне [148] исследовали влияние жесткости термических и термопаровых обработок катализаторов РЗЭ-Х и РЗЭ- на эффективность крекинга газойля, выкипающего при 272—415° С. Они пришли к выводу, что удаление наиболее сильных кислотных центров в высокотемпературных условиях благоприятно сказывается на повышении выходов бензина. Для того чтобы рассмотреть причины повышения селективности по бензину, обратимся к последовательности превращения газойля, кинетическая модель которого [схема (71)] была разработана Уикманом и Нейсом [298]. В соответствии с этой моделью при первичном крекинге (эта стадия на схеме обозначена символом происходит образование бензина и некоторого количества газа, а также кокса, тогда как при вторичном крекинге (А ,) расщеплению подвергается бензин. [c.109]


    В результате бурного развития в нашем веке автомобильной и нефтяной промышленности, и особенно благодаря открытию термического и каталитического крекинга, из нефти стали производить огромные количества легких углеводородов. Катионная полимеризация и алкилирование играли главную роль в использовании этих легких углеводородов для получения разнообразных продуктов моторного топлива, смазочных масел, бутилкаучука, добавок к смазочным маслам, синтетических детергентов и т. д. Хотя в настоящее время все большее количество легких олефинов, этилена и пропилена, полимеризуют по анионному механизму с образованием твердых полимеров, значительно большие их количества до сих пор перерабатывают посредством катионных реакций. [c.184]

    В книге, завершающей серию, рассмотрены актуальные вопросы и описаны важнейшие достижения в области переработки нефти и нефтехимической промышленности. Содержание книги разбито на разделы экономика и направления дальнейшего развития (состав нефтей и его влияние на схему переработки) процессы нефтепереработки (крекинг углеводородов, газификация нефтяных фракций, процессы депарафинизации, свойства и состав консистентных смазок) нефтехимическая промышленность — процессы и продукты (термическое и каталитическое гидродеалкилирование, механизмы реакций углеводородов, карбоний-ионы) применение нефтепродуктов (нитропарафины как топливо, стабильность нефтяных топлив, присадки к топливам). [c.4]

    Помещенные в сборнике № 1 статьи, появившиеся в течение последних двух лет, дают материал, отображающий различные стороны проблемы синтеза моторных топлив. Здесь дана посмертная статья Ф. Уитмора, излагающая теоретические обоснования современных методов переработки нефти алкилирования, полимеризации и изомеризации, одинаково важных для синтеза как индивидуальных углеводородов, так и их смесей. Помещены статьи по синтезу одного из важнейших компонентов топлива—триптана. Ряд статей по механизму изомеризации индивидуальных олефиновых углеводородов представляет интерес сточки зрения освещения задач и возможностей дальнейшего прогрессивного развития каталитического крекинга и деструктивной гидрогенизации. Включена статья по химизму действия различных гидрирующих контактов в промышленном процессе деструктивного гидрирования каменноугольных смол идр. [c.6]

    Вполне самостоятельный и оригинальный цикл составляют его исследования по изучению механизма и кинетики реакций избирательной каталитической гидрогенизации непредельных углеводородов. Наконец, нельзя не отметить третью серию исследований С. В. Лебедева — каталитические превращения непредельных углеводородов под воздействием природных алюмосиликатных пород (активных глин). Эти исследования привлекли внимание ученых многих стран и оказали значительное влияние на развитие такого важного технологического процесса переработки нефти, как каталитический крекинг. [c.6]

    В то время, когда в Германии велась лабораторная разработка процесса изосинтеза, в США началось широкое промышленное внедрение каталитического крекинга нефти. Оба эти процесса предназначались в основном для производства авиационного бензина [7]. По вопросу о механизме процесса каталитического крекинга указывалось [8] Большая часть гипотез, затрагивающих вопрос о механизме каталитического крекинга, основывается на относительном выходе получаемых продуктов. Изучение крекинга индивидуальных углеводородов показало весьма быстрое протекание многих вторичных реакций, вследствие чего первичные реакции крекинга в значительной мере маскируются, и какие-либо заключения относительно природы первичных продуктов, получаемых нрп каталитическом крекинге, основывающиеся на экстраполяции состава продукта к моменту ноль, становятся в значительной стененн недостоверными. . . Продукты каталитического крекинга характеризуются высоким относительным содержанием алканов изостроения (превышающим вычисленное на основании термодинамического равновесия при темнературе крекинга) и высоким содержанием ароматических компонентов в высококипящих фракциях . [c.333]

    Другой характерной чертой состава нефти, подтверждающей механизм образования иона карбония, является большое количество изопарафинов, обнаруживаемых в большинство бензинов прямой гонки, хотя все без исключения жирные кислоты всегда имеют нормальные углеродные цепи. Бензин каталитического крекинга содержит большое количество изопарафиновых углеводородов. Во многих реакциях перераспределения, исследованных Уайтмором [62], наблюдается замена метильной группы. Гринфельдер, Фог и Гуд считают, что это перераспределение осуществляется заменой метильной группы ионом карбония. [c.90]

    После небольшой доработки генераторы были использованы для производства газов из легких нефтей. В таком процессе нефть инжектируется в киняпций слой коалита и,, контактируя с горячими частицами, подвергается крекингу. Механизм реакций сильно напоминает каталитический или термический крекинг углеводородов. [c.60]


    Индивидуальные газообразные углеводороды, которые получаются либо непосредственно из сырой нефти или природного газа, либо путем крекинга более тяжелых нефтепродуктов, используются для производства химических продуктов, пластмасс и синтетического каучука (см. гл. XIII) или как сырье процессов каталитического превращения — полимеризации и алкилирования, ведущих к получению жидких углеводородов (см. гл. II). Большинство процессов каталитического превращения базируется на использовании реакционной способности олефинов и диолефинов, которые содержатся в газе. Часто ненасыщенные соединения получают дегидрированием пли деметанизацией насыщенных углеводородов приблизительно такого же молекулярного веса. Так, этан моншо дегидрировать в этилен, а пропан либо дегидрировать в пропилен, либо разложить па этилен и метан. Эти и подобные реакции [1 —10]1 имеют место в термических процессах, протекающих при 550—750° С. Термическое разложение Taiioro типа легко объясняется радикальным механизмом. По существу аналогичный характер имеют реакции разложения жидких углеводородов. Тел не менее дегидрирование H-oj xana и к-бутиленов, которое [c.296]

    Особого внимания засл живают исследования каталитических превращений ОСС в щэис тствии промышленных катализаторов гидроочистки, ппатформинга и крекинга, которые генетически связаны с превращениями углеводородов, выполненных ранее Р.Д. Оболенцевым. На основании результатов исследований термодинамики, кинетики и механизма реакций гид-рогенолиза ОСС дано теоретическое обоснование процесса гидроочистки. Выявлена возможность гидрообессеривания высокосернистых нефтей, В результате этих исследований впервые показана возможность применения гетерогсшных катализаторов для ускорения реакций ОСС. Распространенное мнение, что ОСС в основном являются контактными ядами, не подтвердилось, что оказалось чрезвычайно важным для разработки новых технологических процессов с участием соединений серы. [c.197]

    Мы надеемся, что предлагаемый обзор послужит частично восполнению пробелов в информации по этим вопросам. Обзор открывается статьей, в которой обобщаются основные выводы более 130 публикаций по изучению с помощью меченых атомов механизма превращений углеводородов при изомеризации, алкилиро1вании, гидрогенизации и дегидрогенизации, ароматизации, крекинге, пиролизе, окислении и некоторых других процессах. Последующие 6 статей являются результатами исследований лаборатории кинетики и катализа Института нефте- и углехимического синтеза г. Ангарска и лаборатории контактно-каталитических реакций Института органической химии АН СССР в Москве. [c.3]

    Изучение каталитической роли галогенидов алюминия Г. Г. Густавсон (наряду с французскими химиками) продолжал до начала XX столетия [309—317]. Он подробно исследовал механизм реакций, полемизировал с Фриделем по этому вопросу, отстаивая точку зрения, что в каталитическом действии А1Хз решающая роль принадлежит промежуточным алюминий органическим комплексам, которые играют роль фермента . Исследования Г. Г. Густавсона выдвигали большое число новых вопросов и стимулировали их решение. Поэтому реакции Густавсона — Фриделя — Крафтса стали предметом разработок многочисленных русских и иностранных авторов. Б. Н. Меншуткин [318] в результате длительных работ пришел к отрицанию комплексов Г. Г. Густавсона, и этот взгляд в дальнейшем получил очень широкое распространение. Результаты же современных работ приводят академика Б. А. Казанского [319] к заключению, что существование комплексов галоидных солей алюминия с ароматическими углеводородами не только не опровергается, но получает полное подтверждение. Г. Г. Густавсон сейчас по праву считается пионером той отрасли химии и технологии нефти, которая известна нод названием крекинга с хлористым алюминием . Б советский период выдающаяся заслуга в возрождении и продолжении работ Г. Г. Густавсона принадлежит Н. Д. Зелинскому и его школе. [c.153]


Смотреть страницы где упоминается термин Механизм каталитического крекинга углеводородов нефти: [c.96]    [c.2]    [c.12]    [c.56]    [c.56]   
Смотреть главы в:

Химия нефти и газа -> Механизм каталитического крекинга углеводородов нефти




ПОИСК





Смотрите так же термины и статьи:

Каталитический крекинг Крекинг каталитический

Крекинг каталитический

Крекинг каталитический механизм

Крекинг нефти каталитический

Крекинг углеводородов



© 2025 chem21.info Реклама на сайте