Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стадии гетерогенных каталитических процессов. Роль адсорбции

    Стадии гетерогенных каталитических процессов. Роль адсорбции. В гетерогенно-каталитических реакциях, как и в других гетерогенных процессах, можно выделить ряд стадий. Наиболее обычными стадиями являются диффузия, обеспечивающая подвод исходных веществ к поверхности катализатора, адсорбция их на этой поверхности, взаимодействие адсорбированных веществ с образованием продуктов реакции, десорбция продуктов и, наконец, отвод продуктов реакции от поверхности катализатора в глубину соответствующей фазы с помощью диффузии. В зависимости от определяющей стадии реакция может протекать в диффузионной, кинетической или переходной областях. С изменением внешних условий роль определяющей стадии может перейти к другому процессу. [c.272]


    Первичной стадией гетерогенно-каталитического процесса на поверхности является процесс адсорбции. Еще Фарадей отмечал роль адсорбции в катализе, пытаясь объяснить каталитическое действие катализатора увеличением концентрации реагирующих веществ в пограничном адсорбционном слое. Однако простейший расчет показывает, что увеличение скорости процесса за счет повышения концентрации в адсорбционном слое не может превышать нескольких процентов, так как объем поверхностного адсорбционного слоя обычно очень мал по сравнению с реакционным объемом. [c.654]

    Адсорбцией называется процесс самопроизвольного концентрирования вешества из объема фаз на поверхности раздела между ними. Адсорбция — вторая, после диффузии, стадия многих гетерогенных химических реакций. Ее роль особенно велика в каталитических процессах. [c.272]

    Дальнейшее развитие теории катализа тесно связано с исследованием состояния катализатора во время реакции. Принципы структурного и энергетического соответствия, оставаясь решающими, должны относиться к системе катализатор — реагирующее вещество, сложившейся ко времени достижения стационарного состояния катализатора. Степень окисления поверхностных атомов катализатора, природа лигандов и состав промежуточного координационного комплекса определяют направление реакции и лимитирующие стадии. Решающую роль играют методы определения состояния катализатора и всей системы во время реакции. Одним из таких методов является измерение потенциала (или электропроводности) катализатора во время реакции. Легче всего это сделать в проводящих средах как в жидкой, так и в газовой фазе для гетерогенных и гомогенных катализаторов. В окислительно-восстановительных процессах структурным фактором являются не только размеры кристаллов и параметры решеток, но и кислотно-основные характеристики процессов. Всякая поверхность или комплексное соединение представляют собой кислоту или основание по отношению к реагирующему веществу, а это определяет направленность (ориентацию) и энергию взаимодействия вещества с катализатором. Для реакции каталитической гидрогенизации предложена классификация основных механизмов, основанная на степени воздействия реагирующего вещества на поверхность катализатора, заполненную водородом. В зависимости от природы гидрируемого вещества в реакции участвуют различные формы водорода. При этом поверхность во время реакции псевдооднородна, а энергия активации— величина постоянная и зависящая от потенциала поверхности (или раствора). Несмотря на локальный характер взаимодействия, поверхность в реакционном отношении однородна и скорость реакции подчиняется уравнению Лэнгмюра — Хиншельвуда, причем возможно как взаимное вытеснение адсорбирующихся веществ, так и синергизм, т. е. увеличение адсорбции БОДОрОДЗ ПрИ адсорбции непредельного вещества. Таким образом, созданы основы теории каталитической гидрогенизации и возможность оптимизации катализаторов по объективным признакам. Эта теория является продолжением и развитием теории Баландина. [c.144]


    Хотя в некоторых случаях активированная адсорбция и является одной из стадий гетерогенного каталитического процесса, роль ее в процессе все-таки недостаточно ясна. Можно предполагать, что активированная адсорбция приводит к деформации адсорбированных молекул и тем самым повышает их реакционную способность. Кроме того, энергии диссоциации адсорбированных молекул оказываются меньше, чем энергия диссоциации молекул, находящихся в объеме. [c.292]

    Учитывая, что процессы гетерогенного катализа протекают непосредственно на поверхности катализатора, естественно, что все свойства поверхности, т. е. ее величина, химический состав поверхностного слоя, структура и т. п. играют существенную роль в активности катализатора. Даже относительно простые гетерогенные каталитические процессы, как, например, дегидрирование спирта, протекают в несколько стадий 1) приближение реагентов к поверхности катализатора 2) адсорбция и ориентация молекул реагента на активных центрах 3) деформация связей в молекулах 4) химическое превращение активированных молекул 5) десорбция и удаление продуктов реакции с поверхности катализатора. [c.98]

    Как уже говорилось, экспериментально определяются только изменения концентраций тех веществ, которые входят в суммарное стехиометрическое уравнение. Концентрации промежуточных веществ обычно измерить невозможно. При этом полное число стадий может быть весьма велико, например для сложных гетерогенно-каталитических процессов, включающих ряд стадий адсорбции и десорбции веществ, образования и исчезновения промежуточных продуктов и т. п. Поэтому выбор ключевых веществ, для которых были бы известны изменения концентраций в ходе реакций, играет существенную роль при описании кинетики сложных процессов. [c.327]

    Адсорбция — это процесс поглощения газов поверхностью твердых сорбентов. Адсорбцпя газов применяется для улавливания ценных летучих растворителей. Последующей десорбцией (отдувкой) адсорбированных растворителей производят их регенерацию (рекуперацию). Адсорбция применяется для очистки воздуха от токсичных газов и паров, для разделения сложных газовых смесей на компоненты и т. д. Адсорбция и десорбция играют видную роль в гетерогенном катализе, так как являются стадиями каталитического превращения вещества. Адсорбционные процессы происходят только на поверхности твердого сорбента. [c.118]

    В гетерогенном катализе внутренняя сложность может иметь своим источником неоднородность поверхности, участие в каталитическом процессе нескольких или многих стадий и нескольких или многих направлений, выход реакций в объем и т. д. С неоднородностью нельзя не считаться. Ее значение и многообразие проявлений делается с каждым годом все более очевидным. Причем все явственнее становится большая роль качественной химической неоднородности. Неоднородность обусловливает множество характерных явлений в равновесиях и кинетике адсорбции и особенно в кинетике каталитических реакций. Неоднородность поверхности можно уменьшить, работая с модельными твердыми телами, например с монокристаллами. Но она часто появляется в результате самой каталитической реакции и может быть необходимой для осуществления ее определенных стадий. Часто полезное модифицирование обусловлено созданием особых форм неоднородности на поверхности катализатора. Но наряду с этим на поверхности твердых катализаторов обычно присутствуют нежелательные активные центры, вызывающие вредные побочные реакции и снижающие селективность катализа. В этом отношении гомогенные катализаторы имеют несомненное преимущество. [c.6]

    При гетерогенном катализе в качестве катализаторов чаще всего исполь-.зуются смеси твердых веществ, каждое из которых играет определенную роль в стадиях каталитического процесса. Нескомпенсироваиное потенциальное поле и большое число дефектов кристаллической структуры приводят к тому, что на поверхности возникают особые активные центры адсорбции, а также донорные и акцепторные участки (центры), на которых происходит присоеди-ление или отщепление нуклеофильных и электрофильных частиц, протонов и -электронов. Чаще всего используемый в настоящее время катализатор синтеза аммиака имеет состав Ре/КаО/АЬОз. Первой стадией реакции синтеза -аммиака является адсорбция N3 на (1,1,1)-поверхности кубической объемно-центрированной решетки железа. На поверхности катализатора происходит также расщепление Нг на атомы. Адсорбированная и активированная молеку--ла N2 постепенно гидрируется атомарным водородом до промежуточного образования ЫаНб. При последующем присоединении атома водорода связь разрывается и образуется молекула аммиака ЫНз. Другие компоненты катализатора оказывают активирующее и стабилизирующее воздействие на отдельные стадии этого химического процесса. [c.436]


    Доуден и Уэллс впервые выдвинули представление о хемосорбции как образовании комплекса между координирующим атомом поверхности и адсорбатом в качестве лиганда. Соответственно в реакциях, лимитируемых стадиями адсорбции или десорбции, в результате энергии стабилизации кристаллическим полем следует ожидать минимума скоростей реакций для ионов с (1°, и оболочками в слабом поле и с и оболочками в сильном поле. Максимальной активностью должны обладать ионы с и а — оболочками в слабом поле. Действительно, двухпиковая активность наблюдалась для ряда реакций (Нг — Ог обмен, диспропорциони-рование циклогексена, дегидрирование пропана и др.) для СггОз, С03О4 и N 0. Однако такая зависимость отнюдь не универсальна, и одной из причин этого является непригодность схемы двухпиковой активности для хемосорбции через стадию образования л-комплекса. Киселев и Крылов [38] тоже трактуют акт адсорбции как процесс поверхностного комплексообразования, создания до-норно-акцепторной связи затягиванием неподеленной пары электронов адсорбата-лиганда па внутренние орбитали атома решетки, являющегося центром адсорбции и играющего роль ядра комплекса. Крылов, основываясь на данных современных физических методов исследования твердой поверхности при адсорбции и каталитических реакциях, приходит к заключению об идентичности в ряде случаев структуры промежуточных комплексов в гетерогенном и гомогенном катализе, протекающем на одних и тех же ионах переходных металлов. Это подтверждает роль координационного взаимодействия как одного из механизмов гетерогенного катализа. Квантово-химическое обоснование такого механизма дано в работе [10]. [c.35]


Смотреть главы в:

Краткий курс физической химии -> Стадии гетерогенных каталитических процессов. Роль адсорбции

Краткий курс физической химии Издание 2 -> Стадии гетерогенных каталитических процессов. Роль адсорбции




ПОИСК





Смотрите так же термины и статьи:

Процесс гетерогенный

Процесс каталитический

Процессы адсорбцией

Стадии гетерогенных каталитических процессов

роль адсорбции



© 2024 chem21.info Реклама на сайте