Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворимость гидроокиси железа в щелочном

    Р1з таблицы видно, что при небольшом избытке шелочи (порядка 0,05—0,1 л) гидроокись железа практически нерастворима в рассоле. С повышением щелочности растворимость гидроокиси железа становится заметной, но меньше, чем в воде, содержащей такое же количество щелочи. Необходимо также учитывать, что в рассоле после очистки остаются мельчайшие частицы гидроокиси железа, возможно, в коллоидно-дисперсном состоянии. Практический опыт применения хлорного железа в процессах рассолоочистки показал, что очищенный рассол может содержать до 3—4 мг/л Ре(ОН)з (в пересчете на Ре " ). Скорость коагуляционного структурообразования гидроокиси желе- [c.90]


    Осаждение суспензиями гидроокисей. Осаждение гидроокисью аммония вызывает местное повышение щелочности раствора на границе соприкосновения капли реактива с анализируемым раствором. Кроме того, раствор гидроокиси аммония поглощает углекислый газ из воздуха и поэтому содержит немного углекислого аммония это приводит к частичному осаждению углекислого кальция и других углекислых солей вместе с гидроокисями алюминия и железа. Поэтому иногда для разделения катионов в виде гидроокисей применяют другие методы, особенно часто — осаждение суспензиями различных гидроокисей. Из табл. 5 ясно, что всякая более растворимая гидроокись может осаждать гидроокись менее растворимую, т. е. осаждающуюся при меньшем значении pH. Гидроокись, осаждающаяся при меньшем значении pH, не осаждает гидроокиси, осаждающейся при более высоком значении pH. На этом основан ряд методов разделения металлов. [c.103]

    Иногда при осаждении следов вещества носителем происходит образование соединения. Так, например, гидроокись железа легко осаждает мышьяк (1П и V) и фосфор в виде малорастворимых арсенита, арсената и фосфата железа. Осаждение микроэлемента может быть более полным, чем это следует из растворимости образовавшихся соединений, благодаря тому, например, что происходит сильная адсорбция арсената железа гидроокисью железа. Другой случай образования соединения при осаждении встречается при использовании теллура в качестве носителя для золота, платины и палладия. Эти металлы количественно осаждаются, когда к раствору их солей, содержащему небольшое количество теллурита щелочного металла, добавляют такие восстановители, как сернистую кислоту или хлорид олова (II). Вероятно, благородные металлы образуют теллу-риды при этих условиях и осаждаются в таком виде с восстановленным теллуром. Однако осаждение этих металлов было бы, несомненно, не менее полным, если бы никакого образования соединения не происходило и восстановленные металлы действовали бы просто как кристаллизационные центры для элементарного теллура. [c.33]

    Выделение малых количеств железа для его определения, главным образом в химических реактивах, было предметом специального изучения Железо (III) отделяли в виде гидроокиси, применяя в качестве носителя гидрат окиси марганца (IV) или в виде сульфида с носителем из сульфида кадмия. Осаждение железа в виде гидроокиси можно применить для его выделения из растворов солей щелочных или щелочноземельных металлов, а также из растворов солей цинка, свинца, кадмия и других металлов, гидроокиси которых осаждаются при более высоком pH, чем гидроокись железа, или которые могут быть удержаны в растворе избытком аммиака. Фосфаты не мешают полному осаждению железа. Этот метод не применим в присутствии тартратов, цитратов, оксалатов, пирофосфатов, арсенатов, арсенитов, а также при наличии тех органических веществ, которые мешают полному выделению гидроокиси железа. В этом случае железо осаждают сульфидом аммония в присутствии небольшого количества кадмия Применимость этого метода ограничена веществами, не содержащими заметных количеств металлов, образующих труднорастворимые сульфиды (металлы, образующие сульфиды, растворимые в избытке сульфида аммония, могут присутствовать). Ход анализа для выделения железа по этому методу описан на стр. 480. [c.470]


    Едкие щелочи разлагают его—образуется растворимый ферроцианид щелочного металла и выпадает гидроокись железа  [c.116]

    Свежеосажденная аморфная гидроокись хорошо растворима в кислотах и в щелочах. В отличие от гидроокисей алюминия и железа растворяется в растворах карбоната аммония и гидрокарбонатов щелочных элементов, а также в растворах ряда солей бериллия (фторида, сульфата и др.) — образуются комплексные соеди- [c.63]

    Различия в растворимости гидроокисей, как было показано в 22, дают возможность осуществить разделение соответствующих катионов путем регулирования величины pH раствора. Так, на стр. 91 было показано, что в то время как для достаточно полного осаждения гидроокиси магния (ПР=5-10 2) требуется создание щелочной среды (рН 11,3), гораздо менее растворимая гидроокись железа Ре(ОН)з (ПР=3,8-10 з8) осаждается практически нацело уже в умеренно кислой среде (pH 3,5). Точно так же в кислой среде (при рН<5) осаждается и гидроокись алюминия ПРа1(он)з=1 9-10 )- Вследствие этого при анализе многих руд, шлаков, известняков и т. д. алюминий и железо отделяют, осаждая их в виде гидроокисей А1(0Н)д и Ре(ОН), от магния, кальция и некоторых других двухвалентных элементов. Осаждение проводят действием слабых оснований, например раствором аммиака ЫН40Н в присутствии соли аммония, понижающей диссоциацию НН ОН, а следовательно, и pH раствора настолько, что величины ПР гидроокисей двухвалент- [c.149]

    Иногда при осаждении в присутствии коллектора образуется соединение между коллектором и осаждаемым веществом. Так, гидроокись железа легко осаждает мышьяк (III) и (V) и фосфор, образуя малорастворимые арсенит, арсенат и фосфат железа. Осаждение микрокомпонента может быть более полным, чем можно было бы предполагать по растворимости образовавшегося соединения, вследствие того, например, что гидроокись железа сильно адсорбирует арсенат железа из его насыщенного раствора. Другой случай образования соединения при осаждении встречается при использовании теллура в качестве коллектора для золота, платины и палладия. Эти металлы количественно осаждаются при добавлении восстановителей (например, SO2 или Sn b) к раствору их солей, содержащему небольшие количества теллурита щелочного металла. Вероятно благородные металлы образуют при этих условиях теллуриды и осаждаются как таковые совместно с восстановленным теллуром. Однако осаждение этих металлов было бы полным и в том случае, если бы образование соединения и не происходило и восстановленные металлы действовали бы просто как кристаллизационные центры для элементарного теллура. Последний тип собирания следов определяемого элемента иллюстрируется станннтной реакцией на висмут в присутствии солей свинца. Восстановленный висмут образует зародыши кристаллизации, на которых быстро отлагается свинец в отсутствие висмута восстановление свинца станнитом происходит очень медленно Этот частный случай почти не имеет практического значения для количественного анализа, но аналогичные случаи могут найти прйме-нение. [c.36]

    Гидроокись железа имеет вид красно-бурого осадка, проявляет основные свойства, растворяется в,кислотах заметно растворима и в горячих концентрированных растворах щелочей (признак амфотерности ). При окислении же гидроокиси железа в щелочной среде получаются солй железной кислоты — ферраты, например КгРе04 феррат калия. В свободном состоянии железная кислота Н2Ре04 неизвестна. [c.279]

    При недостаточно точной нейтрализации раствора примесь Fe + не полностью выпадает в осадок Ре(ОН)з. Гидроокись железа заметно растворима не только в слабокислых, но и в щелочных растворах, содержащих основной азотнокислый кальций (Кушнир М. М. Укр. хим. ж. 1964, т. 30, № 5, с. 1107). Следы Fe можно удалить, пропуская слабощелочной раствор (pH — 7,6) через колонку, заполненную стеклянной ватой (Ангелов И. М., Хайнс он С. И. Труды ИРЕА, 1956, т. 21, с. 93). [c.148]

    В более раннем из них к воде добавляли NaOH или же прибегали к рециркуляции щелочной котловой воды. Этим методом пользовались для защиты всех металлов, встречающихся в таких системах [77, 78]. Эванс считает [4], что механизм ингибирования сводится к следующему. По мере повышения активности (ОН ) растворимость всех окислов и гидроокислов уменьшается, а степень пересыщения прилегающего к металлу слоя жидкости повышается. Все это благоприятствует образованию расположенных близко один к другому зародышей гидроокиси железа, закиси железа или магнетита и способствует формированию защитной пленки. Вначале образуется закись или гидроокись железа (И), которые легко могут превращаться в магнетит при наличии никеля или меди, являющихся катализаторами данного процесса. Однако такой подход связан с трудностями [43]. Достаточная рециркуляция щелочной котловой воды может оказаться неосуществимой или привести к образованию осадков, поскольку этому способствует понижение температуры. Использование в данном случае NaOH может вызвать необходимость в применении более высоких скоростей потока в котельной системе. Потзером [19] были сделаны два интересных замечания. Он отметил 1) что щелочность, возникающая вследствие самопроизвольного растворения массивного же- [c.46]


    Нерастворимые в воде соли железа(П) получают из растворов растворимых солей путем обменных реакций, которые лучше проводить в отсутствие воздуха. Так, карбонат железа Fe Oa образуется взаимодействием раствора сульфата железа(П) с карбонатом какого-либо щелочного металла. Этот белый аморфный осадок при выдерживании на воздухе спустя некоторое время выделяет углекислый газ и переходит в бурую гидроокись железа(П1). Карбонат железа в природе встречается в виде сидерита, который окрашен в желтый цвет, кристаллизуется в тригонально-ромбоэдрической системе и изоморфен кальциту, магнезиту и доломиту (стр. 129). Карбонат железа слабо растворяется в воде, содержащей углекислый газ при этом образуется гидрокарбонат железа Ре(НСОз)г. В этом виде железо содержится в воде некоторых железистых источников (стр. 327) при соприкосновении с воздухом вода этих источников с течением времени в результате гидролиза выделяет углекислый газ и происходит осаждение Ре(ОН)з, образовавшегося в результате окисления. [c.666]

    Свежеосажденная аморфная гидроокись хорошо растворима в кислотах и щелочах. В отличие от гидроокисей алюминия и железа растворяется в растворах карбоната аммония и гидрокарбонатов щелочных элементов, а также в растворах ряда солей бериллия (фторида, сульфата и др.), образуя комплексные соединения. При поглощении из воздуха СОз образуется основная соль ЗВе(0Н)г-ВеСОз. Благодаря большой удельной поверхности аморфная гидроокись может сорбировать из растворов различные примеси, в том числе соли аммония и щелочных металлов. [c.172]

    Катионы 3-й аналитической группы осаждаются в щелочной среде сульфидом аммония при pH 9 в присутствии буферного раствора — смеси гидроокиси и хлорида аммония. 3-ю группу делят на две подгруппы 1) подгруппу катионов, образующих гидроокиси, и 2) подгруппу катионов, образующих сульфиды. Гидроокиси металлов получаются из сульфидов в том случае, когда растворимость гидроокиси меньше, чем растворимость сульфида данного металла. В подгруппе катионов, образующих гидроокиси, ясно заметно влияние диагонального направления в системе Менделеева. По диагоналям расположены элементы, выделяющиеся в этих условиях в виде гидроокисей а) бериллия, алюминия, титана, ниобия б) скандия, циркония, тантала, урана (VI) в) иттрия, гафния, лантана, тория вследствие сходства в свойствах с лантаном и актинием вместе с гидроокисями указанных металлов выпадают также все лантаноиды и актиноиды. Может выпасть и гидроокись магния в отсутствие иона ЫН . Выпадение в этой же подгруппе гидроокиси хрома, Сг(ОН)з, объясняется существованием электронной конфигурации. .. ёЧзК По этой же причине медь с электронной конфигурацией. .. За 1"451 попадает не в 3-ю, а в 4-ю аналитическую группу, образуя сульфид Сы5, не растворимый в кислой среде. Появление внешнего подуровня наблюдается через четыре элемента калий 5, кальций скандий s титан s ванадий хром 5 марганец s железо s кобальт 5% никель 5% медь цинк 5 Поведение ионов ванадия и марганца отличается от поведения хрома, поведение никеля и цинка — от поведения меди. [c.28]

    Свойства соединений, которые образуют ионы магния с красителями в щелочной среде, и причины возникновения окраски до сих пор окончательно не выяснены. По мнению многих авторов, при этом получаются соединения адсорбционного характера. Спектры поглощения соединения титанового желтого с гидроокисью магния полностью совпадают со спектрами поглощения этого же реактива в неводных растворах. Поэтому соединения с титановым желтым и другими реактивами этого типа можно рассматривать [1] как твердые растворы красителей в гидроокиси магния. Применение физико-химического анализа для изучения состава показало, что эти соединения не отвечают простым стехио-метрическим соотношениям реагирующих компонентов. Однако для каждого красителя характерна своя предельная растворимость в гидроокиси магния, а именно [титановый желтый] [М 2+] = = 1 4 [феназо] [Mg2 ь]= 1 10 и [магнезон II] [Mg +]=l 50. Эти данные также подтверждают образование в этом случае твердых растворов. Заметные количества ионов кальция, стронция и бария, а также небольшие количества алюминия, титана, железа и других ионов не мешают реакции на магний. Определению магния мешают заметные количества ионов, образующие в щелочной среде малорастворимые гидроокиси. При большом количестве аммонийных солей не осаждается гидроокись магния. [c.369]

    Колориметрический метод с титановым желтым i . о, 4i основан на осаждении магния щелочью в присутствии титанового желтого. Последний адсорбируется осадком с появлением окраски (от оранжевой до кирпично-красной), интенсивность которой зависит от концентрации магния. Реакция проводится в щелочной среде при рН>12. Концентрацию магния определяют путем сравнения интенсивности окраски анализируемой пробы с окраской шкалы стандартных растворов магния, имеющих концентрацию от 0,2 до 2 лгг/л Mg2+. Для большей точности шкалы в стандартные растворы вводят стабилизаторы — растворы агар-агара, крахмала, декстрина или желатины. Этот метод отличается достаточной чувствительностью и позволяет определять содержание магния с точностью до 0,5—1 мг л. В присутствии кальция интенсивность окраски усиливается. Гипохлорит в количестве до 0,5 г/л не мешает определению при большем количестве гипохлорита его необходимо разрушать . В присутствии небольших количеств железа и алюминия определение не искажается. При большой концентрации Na l получается нерезкая окраска, поэтому при анализе концентрированные рассолы разбавляют водой в 5 раз" . Если в пробе содержится взвешенная гидроокись магния, то при анализе определяют сумму растворимых и нерастворимых соединений магния. [c.190]

    В щелочной среде ионы железа не существуют, поскольку образуется нерастворимая гидроокись. Поэтому в систему вводят двунатриевую солъ этилендиаминтетрауксусной кислоты (трилон Б), которая при взаимодействии с сульфатом железа (И) дает хорошо растворимый в воде комплекс  [c.374]


Смотреть страницы где упоминается термин Растворимость гидроокиси железа в щелочном: [c.122]    [c.418]    [c.267]    [c.35]    [c.167]    [c.408]    [c.170]    [c.284]    [c.103]    [c.366]    [c.406]   
Производство хлора, каустической соды и неорганических хлорпродуктов (1974) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Гидроокиси растворимость

Железо гидроокиси

Растворимость железа



© 2025 chem21.info Реклама на сайте