Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Явление адсорбции и кинетика электрохимических реакций

    В первом разделе книги излагаются методы изучения и современные представления о строении границ раздела металлических или полупроводниковых электродов с ионными системами (растворами, расплавами), а также границы раствор — воздух. Значительное внимание уделено термодинамике поверхностных явлений на электродах, адсорбирующих водород и кислород, и современной теории адсорбции органических соединений на электродах. Во втором разделе подробно анализируются закономерности стадии подвода реагирующих частиц к поверхности электрода, методы изучения этой стадии и приводятся примеры использования явлений массопереноса при конструировании хемотронных устройств и новых источников тока. Третий раздел посвящен изложению закономерностей стадии переноса заряженных частиц через границу электрод — раствор и физических основ элементарного акта электрохимических реакций. При этом рассматриваются такие важные в теоретическом отношении вопросы, как роль работы выхода электрона и энергии сольватации ионов в электродной кинетике. Теории двойного слоя, массопереноса и элементарного акта, по образному выражению А. Н. Фрумкина, — те три кита , на которых базируется мощное и стройное здание кинетики электродных процессов. [c.3]


    Явление адсорбции и кинетика электрохимических реакций [c.342]

    Изложение основ электрохимии в частях А—В характеризуется простотой и конкретностью. Каждый раздел снабжен множеством интересных задач. Большое внимание уделено тем аспектам, которые существенны для анализа систем, представляющих практический интерес. Так, в части Б рассматривается только формальная кинетика электрохимических реакций, без какой-либо попытки анализа молекулярных механизмов. Наряду с этим автор старается хотя бы кратко охарактеризовать современное состояние теории растворов электролитов, излагает основы теорий адсорбции и электрокапиллярности, довольно обстоятельно рассматривает электрокинетические явления, выходя за рамки необходимого минимума. В результате часть Г, безусловно профилирующая часть книги, оказалась несколько ущемленной. [c.6]

    В дальнейшем физическая химия стала развиваться еще более быстрыми темпами. Открытия физиков и химиков в области строения атомов и молекул позволили значительно расширить наши представления о взаимодействии молекул в газах, жидкостях, твердых телах и "свойствах веществ в различных агрегатных состояниях. Получило развитие учение о скоростях химических реакций и катализе, о поверхностных явлениях и адсорбции, сделаны большие успехи в теории растворов, в кинетике электрохимических реакций и по химическим источникам тока, а многие разделы физической химии выделились в самостоятельные науки. В СССР и за рубежом сформировались крупные школы физико-химиков, появилось много научных учреждений, разрабатывающих физико-химические проблемы. В настоящее время трудно назвать область науки и практики, где бы закономерности физической химии не нашли применения и не получили бы развития. Кратко остановимся на содержании основных разделов физической химии. [c.6]

    В последнем разделе обсуждаются особенности других возможных стадий электродных процессов — химических и образования новой фазы, а также многостадийные и параллельные процессы и роль явлений пассивности и адсорбции органических соединений в электрохимической кинетике. В этом разделе отражены только самые основные особенности кинетики сложных процессов и приведено ограниченное число примеров практически важных электрохимических реакций. [c.3]

    В книге рассмотрены свойства и методы изучения заряженных межфазных границ. Излагаются закономерности электрохимической кинетики, связанные с подводом реагирующего вещества к поверхности электрода. Показана роль явлений массопереноса при конструировании хемотронных приборов и новых источников тока. Обсуждены закономерности перехода заряженных частиц через границу электрод/раствор. Излагаются физические основы современной квантовомеханической теории элементарного акта электрохимической реакции, особенности химических стадий в электродном процессе, механизм электрокристаллизации, многостадийные и параллельные процессы, роль явлений пассивности и адсорбции органических веществ в электрохимической кинетике, [c.2]


    В книге рассматриваются закономерности возможных стадий электрохимических реакций, особенности многостадийных и параллельных процессов, явление пассивности и роль адсорбции органических веществ в кинетике электродных процессов. Авторы остановились здесь лишь на самых основных особенностях кинетики сложных процессов и ограничились разбором некоторых характерных примеров. [c.3]

    При рассмотрении механизма электродных процессов различают реакции, протекающие в одной среде (гомогенные реакции) и реакции, которые протекают на поверхности раздела фаз (гетерогенные реакции). Для электрохимии характерно, что в сферу ее изучения входят преимущественно гетерогенные системы, состоящие из двух или более различных гомогенных областей. Известно, что в гетерогенных реакциях важную роль играет скорость диффузии, миграции, конвекции исходных реагентов и конечных продуктов реакции в направлении к поверхности раздела фаз либо в обратном направлении от этой поверхности. Нона кинетику электродных процессов, помимо диффузионных ограничений (концентрационная поляризация), могут заметно влиять химические реакции, протекающие у электродной поверхности, и особенно электрохимический акт взаимодействия между частицами реагирующего вещества и электронами (замедленный разряд, ионизация). Помимо этого, ряд специфических затруднений может внести явление адсорбции на электроде частиц вещества, участвующих в реакции. [c.16]

    В последнее время был получен обширный экспериментальный материал по электрохимическим и физикохимическим свойствам адсорбционных слоев на металлах. При этом были использованы изменения адсорбционных потенциалов, применены радиоактивные индикаторы и другие методы, позволяющие определить влияние адсорбционных слоев на кинетику электродных процессов. Поскольку в процессе электроосаждения металлов адсорбционные явления занимают особое место, то при рассмотрении влияния чужеродных частиц, адсорбирующихся на поверхности электрода, в процессе осаждения металлов необходимо учитывать соотношение скоростей осаждения и пассивирования металла. В случае, когда скорость осаждения металла больше, чем скорость адсорбции, поверхность металла неполностью покрывается чужеродными частицами. При этом электрохимическая реакция протекает только на активных участках электрода и ее скорость будет пропорциональна доле активной поверхпости. Если скорость адсорбции больше скорости осаждения металла, то поверхность электрода полностью закрывается частицами (пассивируется). Б этом случае скорость протекания электрохимической реакции лимитируется перенапряжением, обусловленным работой проникновения ионов металла через адсорбированный слой  [c.370]

    При изучении кинетики электрохимических процессов применяются не только электрические методы. Так, для определения токов обмена и исследования явлений адсорбции на электродах используются радиоактивные изотопы. Ряд методов был разработан и применен при изучении кинетики конкретных электрохимических реакций. Так, например, тонкие металлические мембраны используются при изучении процесса диффузии электролитического водорода в толщу электрода и установления его связи с явлением передачи потенциала на неполяризуемую сторону мембраны. Изучение температурной зависимости скорости электрохимических реакций позволяет лучше понять их природу. Константа скорости химической реакции, т. е. скорость реакции при единичных концентрациях ее участников, связана с температурой уравнением Аррениуса [c.326]

    Одним из основных факторов, влияющих на скорость восстановления ионов металлов из водных растворов, является состояние поверхности электрода. Решающее значение состояния поверхности электрода обусловлено тем, что электрохимические процессы, как правило, протекают на границе фаз электрод — раствор. Естественно, что поверхностные явления, в частности адсорбция различного рода частиц на поверхности электрода и степень ее заполнения, должны играть существенную роль при протекании электрохимических реакций. Степень заполнения поверхности электрода чужеродными частицами зависит как от природы осаждающегося металла, так и от природы адсорбирующихся частиц. Поскольку в процессе электроосаждения металлов происходит непрерывное обновление поверхности электрода новыми слоями осаждаемого металла, то естественно, что при этом существенное значение приобретает соотношение скоростей осаждения металла и адсорбции чужеродных частиц. Последние влияют не только на кинетику восстановления ионов металла, но также и на структуру электролитического осадка. Таким образом, адсорбционные явления во всех случаях оказывают существенное влияние на механизм электроосаждения металлов. [c.7]


    Огромный вклад в развитие физической химии сделан советскими учеными. Мировой известностью пользуются работы школы Н. С. Курнакова (основателя физико-химического анализа), А. Н. Фрумкина (в области электрохимии и электрохимической кинетики), Н. Д. Зелинского, А. Е. Фаворского, С. В. Лебедева (по изучению катализа), П. А. Ребиндера, М. М. Дубинина (в области поверхностных явлений и адсорбций), Н. И. Семенова (в области разработки теории цепных реакций), В. А. Каргина (в области физико-химии высокомолекулярных соединений) и др. [c.8]

    Скорость изменения потенциала в осциллографическо полярографин настолько велика, что в одну минуту можно сделать большое число анализов. Это открывает перед осциллографической полярографией широкие перспективы применения для автоматического контроля производства, для изучения кинетики быстрых химических реакций с участием восстанавливаюш,ихся или окисляющихся веществ, электрохимических реакций, процесса адсорбции веществ на металле. Последнее имеет важное значение для изучения загадочного явления природы — катализа. [c.62]

    В сборнике рассматривается роль строения поверхностного слоя и ад-сорбциойных явлений в электрохимических процессах. Помимо классических проблем, связанных со строением двойного слоя и с явлениями адсорбции на идеально поляризуемых электродах, значительное место отведено в книге работам, посвященным изучению кинетики и механизма конкретных электрохимических реакций и влиянию адсорбции компонентов реакции или посторонних веществ на их кинетику. [c.4]

    В августе 1963 г. в Москве проходило 14-е совещание Международного комитета по электрохимической термодинамике и кинетике (ЦИТЦЕ), в котором принимали участие ученые 22 стран. На совещании было заслушано 140 докладов. Основные проблемы теоретической электрохимии обсуждались на пленарных заседаниях, посвященных элементарному акту электрохимических процессов, строению двойного слоя, явлениям адсорбции на границе металл — электролит и влиянию их иа скорость реакций. [c.3]

    Сложный характер суммарного процесса ионизации кислорода создает значительные трудности при исследовании его кинетики и механизма. В настоящее время наиболее детально изучено восстановление кислорода на ртутном и угольном (нирографитовом) электродах. Характерной особенностью этих электродов является полное отсутствие (ртуть) или очень низкое (несколько процентов на угольном электроде [107, 108]) заполнение их поверхности хемосорбированным кислородом в области потенциалов, близких к стационарному. Это указывает на их относительно малое сродство к кислороду, в результате чего при стационарном протекании электрохимической реакции адсорбция молекулярного кислорода не сопровождается его диссоциацией. Прямое экспериментальное доказательство этого факта было получено в работе [80]. С помощью изотопа Of показано, что в щелочном растворе вся перекись водорода на угольном электроде образуется из молекулярного кислорода, и связь О—О в процессе электровосстановления последнего не разрывается. Следует, однако, отметить, что в условиях длительной выдержки кислорода на угле связь О—О расщепляется, и атомарно адсорбированный кислород восстанавливается до воды. Аналогичное явление имеет место и при нестационарном процессе [109]. [c.44]

    Помимо аналитических целей, полярографический метод имеет и другое назначение. С его помощью решаются вопросы кинетики химических и электрохимических реакций, механизма реакций и строения вещества (кетоэнольной таутомерии, цис-транс-изомерии). Полярографический метод может быть использован также для изучения адсорбции, растворимости, комплексооб-разования, окислительно-восстановительных процессов и ряда других интересных и важных явлений. [c.6]

    Исключительно велики возможности потенциостатического метола при ироведении теоретических исследований в области электрохимиче-ско 1 кинетики . Особое значс 1ие метод приобретает в тех случаях, ко ла скорость электрохимического процесса уменьшается с увеличением поляризующего напряжения гальваностатическая методика здесь непригодна. Так, применение потенциостатического метода позволило связать явления иестабильност при восстановлении хромов Ч1 кислоты с образованием нерастворимых осадков па электроде " . Метод значительно облегчил зозможиост ) вскрыть механизм анодной реакции ионизации водорода на б агородных металлах в кислых растворах . Интересной областью применения метода может стать исследование нестационарных процессов (неравномерное растворение компонентов сталей и сплавов, адсорбция из раствора, окисление поверхности электрода и т. д.). [c.29]


Смотреть страницы где упоминается термин Явление адсорбции и кинетика электрохимических реакций: [c.253]    [c.32]    [c.2]    [c.2]    [c.2]    [c.45]    [c.20]   
Смотреть главы в:

Теоретические основы электрохимии -> Явление адсорбции и кинетика электрохимических реакций

Теоретические основы электрохимии -> Явление адсорбции и кинетика электрохимических реакций




ПОИСК





Смотрите так же термины и статьи:

Адсорбция кинетика

Кинетика электрохимическая

Электрохимические реакции



© 2024 chem21.info Реклама на сайте