Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Общие особенности электрохимических элементов

    Общие сведения. Цинк, кадмий, ртуть являются последними представителями -переходных элементов в периодах. Это обстоятельство, а также специфика полностью завершенной ( °) орбитали накладывают на химию этих элементов определенные особенности. С одной стороны, они еще похожи на своих предшественников по периоду, с другой — в большей мере, чем другие -элементы, похожи на элементы главной группы (НА). Например, сульфат цинка очень похож на сульфат магния, а его карбонат — на карбонат бериллия. Общими для всех элементов главной и побочной подгрупп второй группы являются близость оптических спектров и сравнительно низкие температуры плавления металлов. С медью, серебром и золотом элементы подгруппы цинка роднит следующее. Как и элементы подгруппы меди, они дают комплексы с МНз, галогенид- и цианид-ионами (особенно 2п и С(1). Из-за сильного эффекта взаимной поляризации их оксиды окрашены, достаточно непрочны. Электрохимические свойства в ряду 2п—Сё—Нд изменяются аналогично их изменению в ряду Си—Ад—Аи. Они легко дают сплавы. [c.555]


    С деталями, имеющими электропроводный подслой, нужно обращаться очень осторожно, особенно при перемонтаже их на подвески для нанесения покрытий путем катодного восстановления. Во избежание перегрева электропроводного подслоя увеличивают площадь и количество контактных элементов подвески, осаждение электрохимического покрытия начинают при малой плотности тока (чаще всего при 0,2 —1,0 А/дм ). В качестве первого гальванического подслоя в большинстве случаев служит матовая медь, которая одновременно является буфером между диэлектриком и блестящим никелевым покрытием при резком изменении температуры. Она способствует также повышению прочности сцепления между электропроводным подслоем и последующим слоем покрытия. Хотя медь и имеет значительно меньший коэффициент линейного теплового расширения (1,7 10- °С), чем, например, пластмасса (АБС —8 10- полипропилен—6,3 10- °С), ее нагрев и расширение происходят быстрее. Это приводит к тому, что в каждом отдельном случае величины расширения или сжатия обоих материалов становятся почти равными. В качестве буферного подслоя используют и эластичные осадки матового или полублестящего никеля (коэффициент их линейного теплового расширения—1,3 10- /°С). Толщина буферного подслоя обычно не превышает 50 — 75 % общей толщины покрытия. [c.105]

    Дпя большинства металлов в реальных условиях электрохимическая коррозия протекает гетерогенно-электрохимическим путем, т.е. через локальные элементы. Разные точки поверхности металлов различаются энергией и свойствами, что отражается на кинетике электрохимической реакции. Особенно много таких зон возникает, когда металл содержит инородные включения (рис. 3.4). При наличии электролита с высокой элктропроводностью на этих неоднородностях появляются местные гальванопары, теорию которых разрабатывали де ля РиБ, А.К. Фрумкин, Ф.И. Гизе, H.A. Изгарышев, Г.В. Акимов, А.И. Голубев и др. Однако в том случае, когда интересует только общая величина коррозии, а не распределение ее по поверхности, всю корродирующую поверхность можно считать однородной. Следует иметь в виду, что при такой замене средняя скорость коррозии не определяет опасность коррозионных разрушений (может иметь место питтинговая коррозия). При этом скорость коррозии характеризуется ано,дной плотностью тока Л = //5а, где 5 - площадь анода. Причины появления неоднородности металлов - макро- и микровключения, неоднородность сплава (наличие сварных швов), разнородность металлов, нарушение изоляционного покрытия, наличие на металле окалины, ржавчины, неравномерная деформация, неравномерность приложенных нагрузок и др. [c.37]


    Общие особенности электрохимических элементов [c.231]

    Из приведенных данных видно, что по величине энергии ионизации водород стоит шачительно ближе к фтору, чем к литию, и никакие металлические свойства свободному атому водорода, следовательно, не присущи. Точно так же положительно заряженный ион водорода не имеет ничего общего со свойствами ионов щелочных металлов, поскольку является элементарной частицей — протоном. Вместе с тем в электрохимическом ряду напряжений водород ведет себя как металл. Это объясняется тем, что электрохимический ряд напряжений служит характеристикой атомов металлов в водных растворах (см. гл. V, 11). При ионизации атома водорода в присутствии воды образуется ион гидроксония Н3О+, что сопровождается выделением энергии. Вследствие этого энергия ионизации атома водорода в водном растворе резко снижается и становится близкой к величине энергии ионизации атомов металлов. Заметим, что по некоторым физическим свойствам ион Н3О+ в растворе ведет себя подобно катионам щелочных металлов. Однако эти особенности не относятся к атому или иону водорода и не дают оснований рассматривать его как металл. Сходство строения внешней электронной оболочки атома водорода с внешними электронными оболочками атомов щелочных металлов носит, следовательно, такой же формальный характер, как и однотипность строения внешних электронных оболочек атома гелия и атомов элементов II группы. [c.160]

    В первой части дан необходимый минимум информации о кинетике электродных процессов (на металлах) и влиянии потенциала на их скорость, причем уже здесь по ходу изложения вводятся некоторые понятия и элементы потенциостатических измерений. Читатели, достаточно знакомые с общими положениями электрохимической кинетики, но не изучавшие процессов растворения и пассивации металлов, могут начать ознакомление с книгой с последней главы этой части, где описаны главные особенности зависимости скорости реакции ионизации металлов от потенциала, наиболее часто являющейся предметом потенциостатических коррозионных исследований. Наконец, читатели, знакомые по литературе и с этими вопросами, но не имеющие собственного опыта потенциостатических измерений, могут ограничиться второй и третьей частями, где отражены основные методические вопросы. Четвертая часть полностью [c.7]

    Интересная информация о протекании электрохимических процессов может быть получена из переменнотоковых измерений. Мы остановимся лишь на одной общей особенности поведения электрохимических систем в цепях переменного тока. Это поведение в отсутствии концентрационной поляризации обычно представляют в виде модели из параллельных соединений сопротивления Н и емкости С. Под Н понимают так называемое сопротивление реакции, под С — емкость двойного слоя. Сопротивление элемента Н постоянному току равно отношению —т]/г, сопротивление переменному току — производной —йг 1(И (дифференциальное сопротивление ячейки). [c.13]

    Наличие сероводорода в рабочих средах вызывает опасность хрупкого разрушения оборудования. Сероводородсодержащий продукт одновременно может вызывать все наиболее характерные виды коррозионного разрушения общую коррозию локализованную (язвенную) коррозию коррозионное (сульфидное) растрескивание. Преимущественная реализация того или иного вида коррозионного разрушения зависит от свойств среды и металла, уровня номинальной и локальной напряженности и др. Коррозионные среды оказывают двоякое воздействие на металл. С одной стороны, вследствие электрохимического растворения металла происходит уменьшение поперечного сечения элемента, что способствует повышению действующих напряжений и последующему его разрушению. С другой стороны, анодное растворение металла может приводить к релаксации локальных напряжений из-за притупления вершины трещины или какого-либо другого концентратора. Причем способность к релаксации напряжений зависит от вязкопластических характеристик металла. Специфической особенностью сероводородсодержащего продукта является его охрупчивающее воздействие на металл. Механизм сероводородного охрупчивания аналогичен водородному и заключается в следующем  [c.432]

    В разд. 7.2 отмечалось, что методы второго порядка основаны на нелинейном поведении электрохимической ячейки в электрической цепи. Первым из этих методов подробно обсуждается переменнотоковая полярография на второй гармонике, в которой сигнал ячейки изучается на удвоенной основной частоте. На рис. 7.4, 7.6, 7.32, 7.33 и 7.36 уже приводились примеры как общих, так и фазочувствительных полярограмм или вольтамперограмм на второй гармонике (методы с частотой 2/) и очевидно, что сохраняются все особенности метода на основной частоте (метод с частотой 1/). Действительно, почти все рассуждения применительно к методам на основной частоте легко распространяются на 2/-вариант, но с учетом того, что временная шкала короче (2/, а не /) и что, хотя ток невелик, но и ток заряжения, который ведет себя как линейный элемент цепи (см. разд. 7.2), чрезвычайно мал. Общим выводом из этих двух особенностей является то, что метод второго порядка чрезвычайно чувствителен при определении обратимо восстанавливающихся или окисляющихся веществ, но дает малые токи на единицу концентрации для веществ, участвующих в необратимых электродных реакциях. Принимая это во внимание, мы обсудим только уни- [c.474]


    Физические методы анализа следов элементов. Пер. с англ. под ред. И. П. Али-марина. Изд-во Мир , 1967 (416 стр.). Изложены аналитические возможности и специфические особенности спектрофотометрического, эмиссионного, пламенного и абсорбционного, спектрального, масс-спектрального, электрохимических, электрофизических и ядерных методов анализа полупроводниковых материалов, металлов, биологических объектов. Рассмотрены общие вопросы чувствительности, точности и избирательности методов, подготовка проб и предварительное обогащение. [c.471]

    Развитие идей фотоэлектрохимии на поверхности раздела раствор — полупроводник связано с измельченными полупроводниковыми частицами. Порошки ТЮ2 в смеси с платиной, нанесенные на поверхность, оказались особенно эффективными. Каждая частица может рассматриваться как фотоэлектрохи-мический элемент с замкнутой цепью, соединяющей полупроводниковый и противоэлектроды. Обрисованные выше в общих чертах основные принципы остаются применимыми, несмотря на то, что внешняя электрическая цепь отсутствует. Хотя расстояние между анодом и катодом существенно меньше, чем в обычных электрохимических элементах, продукты реакций переноса заряда остаются разделенными, что невозможно в гомогенных процессах, когда оба противоположных продукта образуются в одной и той же клетке раствора. Описан ряд гетерогенных фотосинтетических и фотокаталитических процессов, использующих определенные полупроводники, для получения СНзОН из СО2, РН из КСООН и ЫНз из N2. В отдельных случаях в качестве фотокатализатора могут действовать чистые порошки полупроводника без примеси металла. Выходы продуктов обычно получаются относительно низкими из-за кинетических ограничений и необходимости применять полупроводниковые материалы с большой шириной запрещенной зоны, которые неэффективно используют солнечный спектр. Возможно, следует придерживаться стратегии природного фотосинтеза, делая энергетические потери полезными путем использования двух фотонов низкой энергии для переноса одного электрона. [c.281]

    Второй вопрос касается отхода Менделеева от идеи сложности и превращаемости элементов, к которой он если не склонялся полностью, то во всяком случае относился сочувственно на предыдущем этапе разработки периодического закона. Теперь в его работах все сильнее проявляется отрицательное отношение к этой идее, вылившееся в 1886 г. в специальное выступление по этому поводу (доб. If) особенно же настойчиво Менделеев начинает проявлять свое отрицательное отношение к этой идее после появления теории электролитической диссоциации (1887 г.), которая связывала в духе прежней электрохимической теории Берцелиуса химические явления с электрическими, видя причину химизма в действии электрически заряженных частиц — ионов (см. № 80, доб. 2t). Менделеев в это ше время (1887 г.) выступил с противополошной теорией — с гидратной (или химической) теорией растворов, в которой защищал и обосновывал свой исходный взгляд на связь химизма не с электрическими свойствами частиц, а с их механикой (доб. 31 и 41 и связанные С ними рефераты из доб. It). Очевидно, что в СВЯЗИ с этим, отстаивая свою общую химико-механическую концепцию, Менделеев стал выступать и против идеи сложности и превращаемости элементов, поскольку в представлении тогдашних физико-химиков эта идея связывалась с химико-электрической концепцией. [c.676]

    За последнее время цехи электролиза первого алюминиевого завода перешли на работу с высоким уровнем металла в ваннах при пониженной температуре электролита. Такой режим благоприятен для получения высоких технологических показателей, т. е. по выходу металла, но он делает электролизные ванны особенно уязвимыми при прекращении или ограничении электроснабжения. Нормально работающая электролизная ванна характеризуется установившимся термическим (тепловым) равновесием в условиях заданного технологическим цроцесоом Температурного режима, т. е. при температуре электролита, равной 935—950° С. Электрическая энергия постоянного тока подводится к ванне в результате прохождения тока через ошиновку ванн, анодные устройства, слой расплавленного электролита и, наконец, катодные устройства с токопод- Водящей системой, т. е. через цепь сопротивлений, она превращается в тепловую энергию. Определенная часть электрической энергии расходуется на электрохимический процесс разложения глинозема. Однако не все выделяемое тепло используется ваннами, часть его идет на бесполезный нагрев элементов сопротивления (ошиновка, кожух и др.) и переходит в окружающую среду. Полезное использование электрической энергии на разложение глинозема составляет 38%, или примерно /з общего количества по- [c.88]

    Для идентификации промежуточных частиц радикального характера, возникающих в ходе электрохимического процесса, с помощью метода ЭПР используют специальные ячейки, конструкции которых описаны в ряде работ, например [57, 58], а также в недавно опубликованной монографии [6]. В ней приведены также ссылки на оригинальные работы прошлых лет. На рис. 2 схематически изображена трехэлектродная ячейка для обнаружения парамагнитных частиц, а на рис. 3 приведена схема спиральной ячейки для исследования методом ЭПР [6]. К настоящему времени методика электрохимического генерирования радикалов в общем случае достаточно хорошо разработана. Однако непосредственное наблюдение с помощью спектроскопии ЭПР очень неустойчивых радикалов, особенно незаряженных, достаточно трудная задача [59]. Электрохимическая ячейка для генерирования радикалов должна удовлетворять целому ряду требований. Прежде всего она должна обеспечивать минимум омических потерь потенциала на элементах цепи. Для уменьшения величины нескомпенсированного падения потенциала применяют плоскую микроячейку с симметричным расположением катода относительно анода и очень малым расстоянием между поляризуемым электродом и электродом сравнения [6]. Толщина такой ячейки не превышает 2 мм. Катодом в ней является платиновая сетка, анодом — во.льфрамовая проволока, расположенная по краям. В такой ячейке нескомпенсированная величина сопротивления мала и омический фактор Ш между катодом и электродом сравнения составляет около 20—40 мв. Небольшая величина Ш позволяет [c.20]

    Для суждения о сверх-либо деполяризации при совместном разряде ионов двух или нескольких металлов используют частные поляризационные кривые, построенные по результатам общего химического анализа и данным о зависимости — ср . Они дают преяставление об электрохимической реакции для случая разряда ионов с образованием однофазного сплава либо при выделении каждого металла в виде отдельной фазы. Если в осадке образуется две или более фаз промежуточного состава, частные поляризационные кривые для колтонентов сплава ле учитывают энергетическое различие стадии вхождения аТома данного элемента в решетку каждой из фаз. На необходимость построения поляризационных кривых для отдельных электродных реакций, особенно при изучении осаждения электролитических сплавов, обращали внимание А. Т. Баграмян и 3. А. Соловьева [3]. [c.102]

    Mg, состаренных для получения максимальной прочности, скольжение при воздействии напряжений происходит в относительно небольшом количестве полос, в которых имеет место большая плотность дислокаций. Перестаривание, которое понижает чувствительность к коррозионному растрескиванию, приводит к тому, что пластическая деформация рассредоточивается по гораздо большему количеству нечетко выраженных полос скольжения [81]. Выделения по границам зерен — важный фактор как с электрохимической, так и механической точек зрения ширина зоны, свободтюй от выделений (так же как и ширина зоны, обедненной легирующими элементами), может также оказывать существенное влияние на процесс растрескивания. Более точное относительное значение этих трех характерных особенностей структуры недостаточно полно установлено, по этому вопросу ведутся значительные дискуссии [82—85], Многие из исследователей концентрируют внимание на роли преимущественной деформации в зоне, свободной от выделений, приводящей к селективному растворению, которое не доказано экспери-менталыю. Селективная коррозия зон, обедненных растворенными элементами, адсорбция водорода, растворение пластически деформируемых участков и адсорбция общего характера также называются в качестве основных ко.мионентов механизма процесса [c.283]

    До недавнего времени электрохимическая термодинамика ограничивалась рассмотрением гальванических элементов с электролитами ионной проводимости. Рас шйрение теории на системы с электролитами смешанной проводимости (ионной и электронно-дырочной), как этого требовала практика, было впервые чыполнено К. Вагнером. Разработанная им теория основана на допущениях,. имеющих частный характер, что, по-видимому, вы зывает ее несоответствие с некоторыми экспериментами. Эти особенности теории Вагнера стимулировали пересмотр методов трактовки гальванических элементок и создание теории, основанной на более общих принципах. Книга посвящена исследованию гальванических элемен тов с электролитами произвольной проводимости методами термодинамики необратимых процессов. [c.5]


Смотреть страницы где упоминается термин Общие особенности электрохимических элементов: [c.89]    [c.227]    [c.227]    [c.241]   
Смотреть главы в:

Руководство по физической химии -> Общие особенности электрохимических элементов




ПОИСК





Смотрите так же термины и статьи:

Электрохимический элемент



© 2025 chem21.info Реклама на сайте