Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Зависимость скорости электрохимической реакции от температуры

    Характер влияния температуры на скорость электрохимических процессов определяется температурной зависимостью константы скорости электрохимической реакции [при кинетическом контроле процесса — см. уравнения (370) и (371)1 или коэффициента диффузии [при диффузионном контроле процесса — см. уравнения (417) и (418)1, которая выражается одним и тем же экспоненциальным законом (242). [c.353]


    Определение зависимости скорости электрохимической реакции от температуры позволяет провести оценку плотности тока и перенапряжения, при которых можно ожидать перехода от обычного разряда к безактивационному. Действительно, в условиях безактивационного разряда =0 и а=0, а потому согласно уравнению (49.20) и А=0. Из уравнения (49.22) видно, что А=0 при некотором перенапряжении =Ao/anF. Это означает, что при г =г все тафелевские прямые, приведенные на рис. 134, должны встретиться в одной точке, в которой и должен происходить переход в безактивационную область. Из уравнения (49.22) следует [c.250]

    ЗАВИСИМОСТЬ СКОРОСТИ ЭЛЕКТРОХИМИЧЕСКОЙ РЕАКЦИИ ОТ ТЕМПЕРАТУРЫ [c.261]

    При изучении кинетики электрохимических процессов применяются не только электрические методы. Так, для определения токов обмена и исследования явлений адсорбции на электродах используются радиоактивные изотопы. Ряд методов был разработан и применен при изучении кинетики конкретных электрохимических реакций. Так, например, тонкие металлические мембраны используются при изучении процесса диффузии электролитического водорода в толщу электрода и установления его связи с явлением передачи потенциала на неполяризуемую сторону мембраны. Изучение температурной зависимости скорости электрохимических реакций позволяет лучше понять их природу. Константа скорости химической реакции, т. е. скорость реакции при единичных концентрациях ее участников, связана с температурой уравнением Аррениуса [c.326]

    Следующий метод, о котором уже много говорилось на дискуссии, связан с изучением температурной зависимости скорости электрохимических реакций. Как уже отмечалось, мало внимания уделяется температурному фактору и сравнительно мало проводится исследований при высоких температурах. Большой заслугой С. В. Горбачева является то, что он одним из первых обратил внимание на целесообразность использования этого метода. Основное здесь — уравнение Аррениуса, преобразованное применительно к реакциям электрохимического характера. Поскольку в такого рода реакциях принимают участие заряженные частицы, то скорость этих реакций зависит не только от концентрации реагирующих частиц, но и от величины потенциала. В связи с этим, как было отмечено М. И. Темкиным, данные, доступные для интерпретации, можно получить лишь в том случае, если изучать зависимость силы тока (скорости электрохимической реакции) от температуры при заданной величине электродной поляризации. Последнее возможно лишь тогда, когда установлено, какой именно электрохимический процесс протекает в данных условиях, и выбран соответствующий электрод сравнения. [c.139]


    Как и для обычных химических процессов, скорость электрохимических реакций, лимитирующей стадией которых является замедленный разряд, зависит от температуры. Чтобы проанализировать эту зависимость, необходимо ознакомиться с термодинамикой отдельного электродного процесса. [c.245]

    С ростом температуры растет скорость электрохимической реакции. Существенное влияние на скорость процессов оказывает и потенциал электрода, характеризующий энергетику текущего электрохимического процесса. Зависимость плотности тока от температуры [c.459]

    Зависимость логарифма плотности тока от обратной температуры для трех видов поляризации приведена на рис. 192. Для процесса с концентрационной поляризацией прямые а, относящиеся к различным потенциалам, параллельны. Эффективная энергия активации не зависит от потенциала поляризации и равна 10— 12 кДж/моль. При химической поляризации прямые Ь, соответствующие различным потенциалам поляризации, располагаются веерообразно. Энергия активации электрохимической реакции понижается с ростом потенциала поляризации и при больших потенциалах, при большой скорости процесса приближается к энергии активации концентрационной поляризации. При химической поляризации энергия активации имеет тот же порядок, что и энергия активации химической реакции в растворах (40—80 кДж/моль). Действительно, при электрохимических реакциях потенциальный барьер, характеризуемый энергией активации, преодолевается не только за счет теплового движения молекул или ионов, но и за счет добавочной энергии, приобретаемой реагирующей частицей при ее прохождении через двойной электрический слой на поверхности электрода. Другим фактором, отличающим химическую поляризацию от концентрационной, является влияние перемешивания на скорость (плотность тока) электрохимического процесса. При концентрационной поляризации скорость процесса возрастает с перемешиванием особенно в области предельных токов, когда концентрация реагирующего вещества близка к нулю и лимитирующей стадией становится его доставка к электроду. Скорость электрохимических реакций с химической поляризацией не зависит от скорости перемешивания. [c.460]

    Скорость электрохимического процесса определяется самой медленной стадией, которая в разных электродных реакциях может быть различной по своей природе. Это служит основанием для классификации электрохимических процессов. В любых электрохимических процессах тип поляризации может быть определен ио абсолютной величине эффективной энергии активации, т. е. той энергии, которая необходима, чтобы молекула или ион вступили в электрохимическое взаимодействие, по ее зависимости от потенциала поляризации и скорости перемешивания. Эффективная энергия активации электрохимической реакции может быть определена при постоянном потенциале поляризации по линейной зависимости логарифма плотности тока от обратного значения абсолютной температуры. [c.403]

    Температура влияет на электрохимическую коррозию весьма сильно. Если процесс идет с поглощением кислорода воздуха, предварительно растворяющегося в электролите (кислородная деполяризация), то зависимость скорости коррозии от температуры неоднозначна, так как при повыщении температуры растворимость кислорода в воде резко снижается и, несмотря на увеличение константы скорости гетерогенной реакции и диффузионных процессов, снижение концентрации растворенного кислорода замедляет коррозионный процесс — недостаток окислителя (рис. 242, кривая 2). [c.519]

    С повышением температуры скорость электрохимических реакций, как правило, растет, следовательно, и скорость коррозии в воде при повышении температуры должна увеличиваться. Однако при коррозии с кислородной деполяризацией на скорость коррозии при повышении температуры оказывает влияние уменьшение растворимости кислорода. В связи с этим в открытых системах на начальной стадии скорость коррозии с ростом температуры увеличивается, а затем уменьшается, проходя при 60— 70 °С через максимум. Если свободное удаление кислорода из системы (закрытые системы) невозможно, при повышении температуры скорость коррозии непрерывно растет. Зависимость скорости коррозии стали от температуры для открытой и закрытой систем показана на рис. 1.4 [2]. [c.6]

    Скорость электрохимической реакции на электроде нри одном и том же значении нотенциала электрода может меняться в зависимости от многих факторов концентрации и температуры раствора, условий перемешивания раствора, материала электрода, наличия адсорбции на электроде ка-ких-либо комнонентов из раствора и др. [c.82]

    Описанное устройство позволяет проводить измерение внутреннего сопротивления, предельных токов, скорости электрохимической реакции (ток обмена), исследовать механизм переноса ртути и электрический шум, зависимость электрических характеристик РК от состава электролита, положения прибора в пространстве, температуры и др. Подобная ЭЯ используется также при изучении фазовых переходов в РК с целью определения нижнего допустимого предела интервала рабочих температур при разработке низкотемпературных электролитов [42]. Для снятия кривой охлаждения или нагрева с помощью источника энергии (холода) устанавливается заданная скорость охлаждения (или нагрева) ЭЯ- Одновременно на нее подается стабилизированный переменный токи на двухкоординатном самописце регистрируется зависимость напряжения на РК от температуры среды. Характерная кривая охлаждения для комплексного электролита ртути приведена на рис. 3.34, из которого видно, что при понижении температуры среды напряжение на ячейке повышается. Это связано с уменьшением удельной электрической проводимости электролита. При температуре выпадения первых кристаллов г 1 наклон кривой изменяется по причине снижения концентрации электролита и блокировки поверхности электродов выпадающими кристаллами. При температуре полного замерзания электролита электрическая цепь разрывается, в результате чего напряжение на ЭЯ резко возрастает (вертикальный отрезок кривой). [c.115]


    Выяснение природы перенапряжения при электрохимических процессах представляет определенный теоретический и практический интерес. Электродная поляризация в общем случае складывается из четырех составляющих 11р. 11 . Для оценки природы поляризации необходимо найти вклад, который вносит в ее общую величину каждая составляющая. Поскольку в настоящее время отсутствуют необходимые для этого данные, используется упрощенный подход к решению этого вопроса. Во-первых, определяется лимитирующая стадия. Вид перенапряжения, ей свойственный, относится к электродному процессу в целом. Во-вторых, величина поляризации разделяется только на две части концентрационную, к которой относится перенапряжение диффузии, и активационную, объединяющую все остальные виды перенапряжения. Для определения природы поляризации используются различные методы. К их числу относится метод, основанный на применении вращающегося дискового электрода, метод поляризационных кривых и др. Широкое применение нашел температурно-кинетический метод, предложенный С. В. Горбачевым. Оп основан на изучении зависимости скорости электродных процессов от температуры. Уравнение Аррениуса, связывающее константу скорости k химической реакции с температурой и энергией активации [c.510]

    С. В. Горбачевым показано, что разнообразные электрохимические реакции удовлетворительно выражаются уравнением, сходным по своему смыслу с уравнением для скорости химических реакций Аррениуса. Зависимость плотности тока I от абсолютной температуры Т может быть выражена уравнением [c.317]

    Исследования зависимости скорости катодного процесса электроосаждения меди от температуры показали, что этот фактор значительно ускоряет течение электрохимической реакции. Как видно из кривых, приведенных на рис. 7, повышение температуры от 20 до 60° С при величине катодной поляризации 20— 40 мв ускоряет процесс более чем в три раза. При дальнейшем увеличении катодной поляризации влияние температуры несколько уменьшается и, начиная с 60 мв, оно остается постоянным вплоть до предельного тока, который достигается примерно после 250 мв. В этом интервале поляризации изменение температуры от 20 до 60 ускоряет процесс приблизительно в два раза. [c.36]

    Одним из основных методов её исследования является анализ поляризационных кривых, отражающих зависимость скорости процесса г от величины электродного потенциала е. Такие кривые можно получить компенсационным методом, потенциостатически или гальваностатически с применением неподвижного электрода или вращающегося дискового электрода. Природу замедленной стадии можно установить по форме кривой, ее изменению с изменением температуры, концентрации и состава электролита. По характеру зависимости предельного тока от скорости вращения дискового электрода можно разграничить влияние диффузии и химической стадии. Форма кривых изменения потенциала электрода во времени при постоянной плотности тока или без него дает возможность судить об отсутствии или наличии пассивационных явлений. Температурная зависимость скорости электрохимических реакций (температурно-кинетический метод) используется для расчета [c.138]

    Далее. Так как в уравнение Аррениуса входит скорость конкретной химической реакции, отвечающей той, для которой снимается зависимость силы тока от поляризации при ра.эных температурах, необходимо знать распределение тока между частными реакциями и определить долю тока, относящуюся к тому процессу, для которого предполагается произвести расчет энергии активации. К сожалению, эти требования не всегда соблюдаются, и получаемые величины энергии активации не имоют реального смысла. Сказанное мной но умаляет, конечно, того значения, которое имеет энергия активации не только для химических процессов, но и для электрохимических. Естественно поэтому, что критика, обращенная в адрес С. В. Горбачева, не может служить основанием для того, чтобы перестать заниматься температурной зависимостью скоростей электрохимических реакций. [c.139]

    КИНЕТИКА ХИМИЧЕСКАЯ (греч. к пб11ко5 — способный двигать) — учение о скорости химических реакций, важнейший раздел физической химии. Под К- X. понимают зависимость скорости химической реакции от концентрации реагирующих компонентов, температуры, давления, катализатора и других параметров, например, потенциала электрода — в электрохимических реакциях, интенсивиости света — в фотохимических реакциях, дозы излучения — в радиационно-химических реакциях й т. д. Скоростью химической реакции называется число актов реакции, происходящих за единицу времени в единице объема фазы — в случае гомогенной реакции, или на единичной поверхности раздела — в случае гетерогенной реакции. Одной из важнейших характеристик К. X. является константа скорости реакции, которую определяют через концентрацию реагирующих компонентов. Йапример, для реакции [c.126]

    Аналогичная зависимость для электрохимических реакций позволяет, определив величину энергии активации процесса, вскрыть природу электродной поляризации. Скорость электрохимического процесса характеризуется плотностью тока, поэтому определение влияния температуры на скорость процесса сводится к исследованию зависимости плотности тока от температуры при постоянной величине поляризации, т. е. к получению i — Г-кривых при Аф = onst. [c.365]

    Кинетика (от греч. kinetikos — способный двигать) — учение о скоростях химических реакций. Под К. реакции понимают зависимость скорости данной реакции от концентрации реагирующих веществ, температуры и других параметров (потенциала электрода в электрохимических реакциях, мощности дозы излучения в радиационно-химических реакциях). [c.66]

    Исследовано воздействие переменного тока промышленной частоты на процесс растворения свинца в азотной кислоте. Изучена зависимость скорости электрохимического растворения свинца в азотной кислоте от концентрации кислоты, температуры электролита, плотности тока. Найдено, что переменный ток интенсифицирует процесс растворения свинца. Изучена кинетика растворения свинца в разбавленной азотной кислоте. Установлено, что реакция растворения свинца в разбавленной азотной кислоте имеет первый порядок по азотной кислоте энергия активации растворения свинца в 3 н. азотной кислоте составляет 17,3 кдж1моль. Табл. 3, рис. 2, библ. 7 назв. [c.288]

    Таким образом, между логарифмом адсорбируемости и обратной величиной абсолютной температуры существует прямолинейная зависимость с ростом температуры величина Ро уменьшается. Если деполяризатор адсорбируется очень сильно (например, при не очень высоких катодных потенциалах), т. е. рс > 1, то заполнение им поверхности 0 может быть очень высоким (приближающимся к единице). Тогда с повышением температуры 0 будет меняться лишь незначительно [так как 0 = рс/(1 + Р )], другими словами, в этих условиях десорбция деполяризатора с повышением температуры почти не будет влиять на скорость электродного процесса. По-видимому, именно эти условия реализуются в случае 1-й волны восстановления иодметилтриэтилсилана, о котором речь шла несколько выше. В этом случае сдвиг с температурой определяется практически лишь изменением константы скорости электрохимической реакции (рис. 15, прямая /),т. е. так же, как и у необратимых процессов, не осложненных адсорбционными явлениями. [c.77]

    Скорость электрохимической реакции, так же как и скорость химической реакции, зависит от концентрации реагентов и температуры. Более того, поскольку реакция включает перенос электронов с электрода или на него, скорость зависит также и от потенциала электрода. Таким образом, исследование кинетики электродных процессов — это в первую очередь исследование зависимости энергии активации, а следовательно, и скорости электрохимической реакции от потенциала электрода при заданной концентрации реагентов и постоянной температуре. Контроль реакции переносом массы, встречающийся в полярографии, не играет важной роли даже в быстрых поверхностных процессах на электродах, если концентрация электроактив-ного агента в массе раствора достаточно высока, например, 0,1—1,0 моль/л. Скорость электрохимической реакции измеряется непосредственно по плотности тока. Экспериментально наблюдаемый ток (или плотность тока) представляет собой сумму токов, отвечающих скоростям всех электрохимических реакций, протекающих в конкретных условиях опыта. Помимо скорости основной реакции он может отражать и скорости нескольких побочных реакций. Поэтому кинетическое исследование электрохимической реакции должно включать идентификацию и анализ продуктов. Если выход реакции по току высок, например, 90—100%, то интерпретация результатов кинетического исследования существенно упрощается. Ток в этом случае выступает непосредственной мерой скорости единичного процесса на электроде. [c.20]

    Влияние ингибиторов иа кинетику электрохимических реакций, т. е. на скорость коррозионного процесса, определяется также в потенциостатическом режиме. Для этого снимаются анодные и катодные поляризационные кривые. В обще.м случае анализ формы поляризационных кривых и изучение характера их зависимостп от состава раствора, температуры, ингибирующих добавок позволяют получить довольно полные сведения о природе изучаемого электрохимического процесса, В зависимости от того, как влияют на кинетику электрохимической реакции конкретные ингибиторы и в какой степени замедляют ее, их делят на анодные, катодные или смешанные, В результате дополнительных графических построений, определяют точки саморастворения и затем скорость коррозионного процесса (г/(м ч), по формуле [c.179]

    В настоящем обзоре показано, что сочетание двух моделей, учитывающее, что перенос электрона сопровождается как перестройкой полярной среды, так и движением протона, позволяет количественно объяснить особенности реакций электрохимического выделения водорода. Константа скорости эндотермической реакции разряда ионов водорода описывается аррениусовской зависимостью, в которой энергия активации преимущественно связана с перестройкой среды. Для быстрой экзотермической реакции электрохимической десорбции (образования молекулы водорода из адсорбированного атома водорода, оксониевого иона и электрона металла) скорость реакции определяется туннельным переходом электрона из металла в реакционный комплекс и не зависит от температуры. Обе реакции характеризуются изотопным эффектом, падающим с уменьшением энтальпии реакции. [c.203]

    Нока еще нет ответа на все эти вопросы. Их решение требует широких теоретических изысканий, большой экспериментальной работы, применения всей мощи современной приборной техники. Электрохимики накапливают опытный материал исследуют зависимость скорости электроокислепия от различных факторов (концентрации топлива, температуры, состава раствора и др.), отыскивают и изучают новые катализаторы реакций электрохимического окисления, разрабатывают электрохимические методы исследования закономерностей адсорбции органических веществ па катализаторах. [c.107]

    Основным методом исследования кинетики электрохимических реакций является получение кривых, передающих связь между потенциалом электрода под током и плотностью тока. Эти кривые называются обычно I — е (или поляризационными) кривыми. Анализ формы поляризационных кривых, а также анализ характера их зависимости от состава раствора, температуры и других физико-химических параметров, позволяют получить довольно полные сведения о природе изучаемого электродного процесса. Поляризационные кривые снимают чаще всего по прямому компенсационному методу. В этом случае ка исследуемый электрод подается постоянный ток и измеряется установившееся значение потенциала или, точнее, значение разности потенциалов между исследуемым электродом и соответствующим электродом сравнения. При таком способе измерения (рис. 49) в величину потенциала включаются омические потери в контакте (кбод), в подводящем проводнике (до точки разветвления компенсационной и поляризационной схем — 180 ), в самом электроде ( еом) и в слое электролита между электродом и капиллярным концом электролитического соединительного ключа (збод). Омические потери напряжения в металлических проводниках обычно малы и их всегда можно или снизить до желаемой величины (увеличением сечения проводника, сокращением его длины и т. п.), или учесть на основании прямых измерений и расчетов. Падение напряжения в электролите труднее поддается учету и может составить заметную долю от всей измеряемой величины. Кабановым были предложены расчетные формулы, по которым можно получить ориентировочную величину омического падения напряжения, если известны геометрия электрода и способ подведения к нему электролитического ключа, а также удельная электропроводность раствора. Вследствие конечной скорости транспортировки ионов, слой электролита в непосредственной близости к электроду имеет состав, отличный от состава исходного раствора. Кроме [c.322]

    Своеобразный характер зависимости эффективной энергии активации от величины катодной поляризации нетрудно понять, если учесть возможность различного изменения свойств пассивирующих пленок при повышении температуры исследованных электролитов. Уменьшение прочности пленок с повышением температуры должно влиять также на изменение величины активной поверхности электродов. В связи с этим становится очевидным, что определяемая экспериментально величина эффективной энергии активации в данном случае отражает также изменение скорости процесса за счет изменения активной поверхности катода. Этим следует объяснить появление максимумов энергии активации при выделении золота и индия и большую величину этой энергии при электроосаждении серебра. Не исключено также, что указанный фактор в некоторой степени меняет и величину опреде.чяемой энергии активации при выделении меди, цинка и кадмия. С изменением активной поверхности, очевидно, связана малая энергия активации в зоне предельного тока при электроосаждении индия из цианистых растворов. Влияние изменения активной поверхности катода на определяемую эффективную энергию активации делает ее величину весьма приближенной. Поэтому она не может служить точным кинетическим параметром электрохимической реакции даже в тех случаях, когда реализованы условия [296], при которых численные значения эффективной и реальной энергии активации практически совпадают. Как показывают определенные нами величины токов обмена [c.132]


Смотреть страницы где упоминается термин Зависимость скорости электрохимической реакции от температуры: [c.291]    [c.403]    [c.8]   
Смотреть главы в:

Введение в электрохимическую кинетику -> Зависимость скорости электрохимической реакции от температуры

Введение в электрохимическую кинетику 1983 -> Зависимость скорости электрохимической реакции от температуры

Введение в электрохимическую кинетику 1983 -> Зависимость скорости электрохимической реакции от температуры




ПОИСК





Смотрите так же термины и статьи:

Реакция скорость, зависимость

Реакция температуры

Скорость зависимость

Скорость реакции от температуры

Скорость температуры

Электрохимические реакции

зависимость от температур



© 2025 chem21.info Реклама на сайте