Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы, сплавы, полупроводниковые соединения

    В современной технике области применения редких металлов непрерывно расширяются. Их роль особенно велика в производстве нержавеющих сталей, высококачественных сплавов, тончайших полупроводниковых приборов и материалов для ракетной техники. Широкое применение редкие металлы находя в ядерной энергетике, где требуются материалы с особыми характеристиками. Перспективной областью использования редких элементов является микроэлектроника, для которой особое значение приобретает глубокая очистка металлов и их соединений. [c.5]


    Большим достоинством ионно-плазменного распыления является его универсальность. С одинаковым успехом могут быть распылены металлы с различными свойствами, например вольфрам и золото. Такие сплавы, как нихром, пермаллой и нержавеющая сталь, распыляются без изменения состава распыленного материала. Сложные (сплавные) пленки, состоящие из двух или нескольких металлов, могут изготовляться также одновременным распылением нескольких независимых мишеней. При этом скорость распыления каждой из мишеней может устанавливаться и регулироваться независимо от других мишеней. Распыляться могут как чистые полупроводниковые материалы (кремний и др.), так и полупроводниковые соединения (сульфид кадмия и др.). [c.24]

    Применение в энергетике. Бор (изотоп 5°В) интенсивно поглощает медленные нейтроны, поэтому используется для изготовления регулирующих стержней атомных реакторов и защитных устройств от нейтронного облучения. Кристаллический бор обладает полупроводниковыми свойствами и используется в полупроводниковой технике (его проводимость при нагревании до 600 С возрастает в 10 раз). Исключительной химической стойкостью, твердостью, жаростойкостью обладают многие соединения бора с металлами побочных подгрупп. Алюминий и его сплавы применяют в энергетике в качестве конструкционного и электротехнического материала. Галлий применяют в полупроводниковой технике, так как его соединения с мышьяком, сурьмой, висмутом, а также аналогичные соединения индия обладают полупроводниковыми свойствами. Галлий используют при изготовлении высокотемпературных термометров с кварцевыми капиллярами (измерение температуры до 1500° С). Галлий может быть использован как хороший теплоноситель в системах охлаждения ядерных реакторов, лазерных устройств. Индий обладает повышенной отражательной способностью и используется для изготовления рефлекторов и прожекторов. Способность таллия при температуре ниже 73 К становиться сверхпроводником делает его перспективным материалом в энергетике. Представляют практический интерес многие соединения этих металлов и соединения бора, например нитрид бора ВЫ—боразон, отличающийся исключительной твердостью и химической инертностью. [c.230]

    Кадмий входит в состав некоторых сплавов, в частности подшипниковых. Небольшая добавка С(5 к меди сильно увеличивает ее прочность, а электропроводность при этом изменяется мало. Кадмиевые покрытия металлов применяют для защиты от коррозии. Сульфид Сё5 и селенид Сс15е (ярко-красный) — пигменты в лаках и красках. Кроме того, эти соединения и теллурид кадмия используют в полупроводниковых приборах. [c.599]


    О получении металлов, сплавов, соединений и полупроводниковых материалов восстановлением галогенидов водородом на нагретой поверхности. [c.255]

    Броматометрическое титрование рекомендовано для определения мышьяка в рудах, концентратах и минералах [356, 1047], в сплавах с висмутом и селеном 1342], в селеномышьякопых продуктах [266], в сталях, сплавах и рудах, содержащих сурьму [987], черновом свинце [182], полупроводниковых соединениях бора с мышьяком [340], арсениде галлия [1083], инсектицидах [1080], металлах, растворимых в кислотах [988], растворах солей железа [96], продуктах, содержащих платиновые металлы [219]. [c.43]

    Большой интерес представляют редкоземельные ферриты (гранаты), сочетающие полупроводниковые, диэлектрические и ферромагнитные свойства (микроволновые передатчики, резонаторы и т. д.). Особое внимание уделяется иттриево-железным гранатам типа ЗУзОз- бРе Оз, являющимся ценным материалом для магнитных сердечников в микроволновой и телевизионной аппаратуре [23]. Алюмо-иттрие-вые гранаты имитируют бриллианты [3]. Разнообразие магнитных свойств редкоземельных металлов и их сплавов представляет несомненный интерес с точки зрения использования их в электронике [2]. Окислы тяжелых РЗЭ применяются в запоминающих устройствах электронно-вычислительных машин [3]. Большое значение РЗЭ приобретают как полупроводниковые материалы. Принципиально возможно получить большое число соединений РЗЭ с 5е, Те, 5, 5Ь, В и др., имеющих широкий набор полупроводниковых свойств [13, 2]. [c.89]

    Металлы, сплавы, полупроводниковые соединения [c.196]

    Методом атомпо-абсорбционной спектрофотометрии определяют Sb в различных материалах, в том числе в алюминии и его сплавах [954, 1469], геологических материалах, минеральном сырье и горных породах [97, 732, 863, 954, 1338, 1391, 1485, 1638], железных рудах, железе, чугуне, стали и ферросплавах [888, 954, 1069, 1140, 1141, 1601], меди и медных сплавах [1392, 1534, 1673], мышьяке и его сплавах [1534], никеле, никелевых сплавах и соединениях [954, 955, 1594], олове и его сплавах [1354], оловянносвинцовых припоях [1166], свинце, его сплавах и солях [267, 268, 1354, 1450], галенитах [1387], сплавах редких и цветных металлов [1140, 1321], полупроводниковых материалах [265, 1122], рудах [97, 1511, 1601, 1638], почвах [1391, 1594, 1638], силикатных материалах,. керамике и стеклах [652, 1587], чистых веш,ествах [315],. солях ш,елочных и ш,елочноземельных металлов [387], природных и сточных водах [1123, 1209, 1213, 1367], плутонии [1622], солях цинка и кадмия [387], синтетических волокнах [1321], пиш,евых продуктах [1367], пистолетных пулях [948], добавках к нефтепродуктам [1563], химических реактивах и препаратах [264—266, 268, 387]. [c.93]

    Нестабильность ионного тока устраняется двумя путями использованием фотографических пластин [41—43] или применением регистрирующей системы, в которой фиксируются отношения разрешенного и неразрешенного ионных пучков вместо величины одного разрешенного пучка. В искровом источнике анализируемый образец полностью распадается и наблюдаемый масс-спектр представляет собой сумму масс-спектров индивидуальных элементов, из которых состояло твердое вещество. Метод вакуумной искры не может дать информации для идентификации сложных соединений он применяется главным образом для анализа металлов, сплавов, полупроводниковых материалов и т. п. [c.121]

    За последние два десятилетия значительно увеличились объем и масштабы производства некоторых редких металлов и их соединений (титан, цирконий, ниобий, германий, индий, галлий, церий, литий и другие, гидриды, бориды, иодиды, карбиды, большое число разнообразных сплавов). Выпускаются редкие металлы и их соединения высокой чистоты (ультрачистые) для атомной, полупроводниковой и металлургической промышленности (уран, торий, цирконий и др.). [c.13]

    Катализаторами электрохимических реакций служат металлы и полупроводники. Наиболее широкое примене -ние нашли -элементы и особенно металлы платиновой группы, никель и серебро. Установлено, что сплавы некоторых металлов обладают более высокой каталитической активностью, чем чистые металлы. Например, сплав платина-рутений имеет более высокую каталитическую активность в реакциях электроокисления водорода и метанола, чем платина и рутений. Вместе с тем в последние годы обнаружены катализаторы из числа боридов, карбидов, сульфидов и окислов металлов. Так, борид никеля и карбид вольфрама оказались хорошими катализаторами электроокисления водорода и гидразина, а окись вольфрама и бронза (Ыаж Оз, где х—переменное число) — катализаторами восстановления кислорода. Поскольку число сплавов и полупроводниковых соединений очень велико, то весьма широк и круг перспективных катализаторов. Круг возможных катализаторов сужается при учете их стойкости в условиях работы электрода, электропроводности и стоимости. [c.25]

    В минералах, рудах и концентратах фосфор находится в виде ортофосфатов. Для разложения навесок этих материалов можно применять как окисляющие, так и неокисляющие кислоты. При разложении металлов, сплавов и полупроводниковых соединений, содержащих фосфор в виде фосфидов (РедР, СигР и др.) или твердых растворов, с целью предотвращения образования летучего фосфористого водорода применяют лишь окисляющие кислоты или их смеси азотную, смесь азотной и соляной кислот, соляную кислоту, насыщенную бромом и др. Однако часть фосфора после разложения металла или сплава в окисляющих кислотах находится в виде соединений низших степеней окисления Для полного их окисления до ортофосфорной кислоты в качестве окислителя чаще всего применяют перманганат калия или хлорную кислоту, нагретую до выделения ее паров. Применение в качестве окислителя персульфата аммония приводит к неполному окислению соединений фосфора. Соединения фосфора низших степеней окисления переводят в ортофосфаты также нагреванием при 120—130° С навески анализируемого материала, переведенного в нитраты. [c.26]


    Металлы и сплавы окисляются азотной кислотой с образованием нитратов, которые обычно хорошо растворимы в воде. Золото и платиновые металлы составляют исключение, они не взаимодействуют с азотной кислотой. На поверхности ряда металлов (А1, В, Сг, Ga, 1п, Nb, Та, Tli, Ti, Zr и Hf) при действии азотной кислоты образуется защитная пленка из нерастворимых оксидов и поэтому указанные металлы не растворяются. Кальций, магний и железо пассивируются при действии очень концентрированной азотной кислоты и также не растворяются. В разбавленных растворах азотной кислоты они растворимы. Селен, теллур, мышьяк, а также полупроводниковые соединения GaSe и dTe растворяются в азотной кислоте. [c.193]

    Около 200 сплавов содержат 5Ь она придает твердость свинцу и олову (хартб-лей или твердый свинец, из которого, в частности, отливают пластины для свин- цов 1х аккумуляторов, гарт — типографский сплав, невысокая температура плавления которого позволяет легко отливать литеры) сплавы сурьмы (до 15%) с оловом с добавкой свинца, а иногда меди, цинка и висмута (баббиты) обладают антифрикционными свойствами, и поэтому ими заливают подшипники скольжения. Интерметаллические соединения 5Ь со многими металлами обладают полупроводниковыми свойствами (например, для АзЗЬ ширина запрещенной зоны Д = = 1,6эВ). Добавкой сурьмы изменяют полупроводниковые характеристики германия. Тонкий порошок сурьмы — основа краски железной черни. [c.268]

    Установление количеств, зависимости св-в кристаллич. в-в от их структуры пока оказывается возможным лишь в редких случаях (напр., расчет энтальпий сублимации орг. соединений). В настоящее время возможны гл. обр. качественные оценки, к-рые тем не менее имеют существ, практич. значение, напр., при изучении влияния малых добавок на синтез и св-ва монокристаллов (лазерных, люминесцентных, полупроводниковых и др. материалов), в вопросах физики и хи-Мин металлов и сплавов, полупроводников и др. Активно изучается влияние кристаллич. структуры на хим. р-ции в твердом теле. Кристаллохим. подход используется в техн. материаловедении (неорг. материалы, металлы, сплавы, цементы, бетоны, композиты, полимеры и др.). Изучение строения комплексов белок - субстрат, структуры нуклеиновых к-т в кристаллич. состоянии позволило модифицировать хим. состав белков с целью улучшения их бнол. ф-ций, что важно для биохимии, медицины и биотехнологии. [c.536]

    Применение. Из рассеянных редких металлов меньше всего используется галлий. Вследствие низкой температуры плавления (29,8 °С)-и высокой температуры кипения (2230 °С) металл предложено использовать для изготовления высокотемпературных термометров. Легкоплавкие (<60°С) сплавы галлия с рядом металлов (висмутом, кадмием, свинцом, цинком, индием, таллием) могут быть использованьг в сигнальных устройствах. В последнее время галлий находит применение для получения полупроводниковых соединений — арсенида, фосфида, антимонида галлия. Галлиевые оптические стекла характеризуются высокой отражательной способностью. Сплавы, содержащие галлий, предложено применять в зубоврачебной практике. [c.212]

    Применение. С. находит широкое применение в технике в виде сплавов и соединений. Сплав С. со свинцом (от 5 до 15% 8Ь), т. наз. твердый свинец, используется для изготовления пластин аккумуляторов, листов и труб для химич. пром-сти, для оболочек телеграфных, телефонных и электрич. кабелей. Типографский металл — сплав свинца, олова и С. (от 5 до 30% 8Ь) применяют для изготовления типографского шрифта. Подшипниковые металлы (бабиты) — силав С. с оловом, свинцом и медью (от 4 до 15% 8Ь) используют в качестве вкладышей подшипников. В последние годы большое применение в произ-ве полупроводниковых приборов находят С. высокой чистоты и антимониды. Чистую С. (общая сумма примесей 1 10 вес.%) применяют как донорную добавку при произ-ве полупроводников из германия, а также она служит исходным материалом для приготовления антимонидов (А18Ь, [c.562]

    Рябчиков Д И, Цитович И К Ионообменные смолы и их применение М, Наука , 1962, 186 с Савицкий Е М Новые металлические сплавы М, Знание , 1967, 46 с Савицкий Е М, Бухаиов Г С Металловедение сплавов тугоплавких и редких металлов М, Наука 1971, 354 с Сажин Н П Развитие в СССР металлургии редких металлов и полупроводниковых материалов М, Цветметинформация , 1967, 136 с Салдадзе К М, Пашков А Б, Титов В С Ионообменные высокомолекулярные соединения М, Госхимиздат, 1960, 356 с [c.336]

    Элементарный теллур и теллуриды некоторых металлов являются ценными полупроводниками и в последнее время находят значительное примеиение в полупроводниковой технике. Ниже приводятся данные о некоторых эвтектических сплавах интерметалличеоких соединениях теллура [361]  [c.133]

    Разнообразие магнитных свойств редкоземельных металлов и их сплавов представляет несомненный интерес с точки зрения широкой возможности использования их в электронике [ 13]. Большое значение РЗЭ приобретают как полупроводниковые материалы. Принципиально возможно получение весьма большого количества соединений РЗЭ с 5е, Те и 5 с широким набором полупроводниковых свойств [10]. Благодаря высокой электронной подвижности возможно использование полупроводниковых соединений с 5 и 5е в качестве термоэлектрических преобразователей. Разработаны высокотемпературные термоэлектрические элементы на основе сульфидов 5т и Се, работающие при температуре до 900 С с высоким к. п. д. [18]. Весьма перспективным для этих же целей считается селенид гадолиния [111. Известны термистеры на основе ВаТЮд с добавлением La +, 5m +, Gd +, Но + [6]. [c.275]

    Работы в Московском институте стали и сплавов на кафед- ре физико-химических исследований процессов производства чистых металлов и полупроводников (А. Н. Крестовников), а ранее в Институте цветных металлов и золота им. М. И. Калинина относятся к свойствам цветных и редких металлов и полупроводниковых материалов, а также к теории глубокой очистки веществ (В. Н. Вигдорович и В. М. Глазов — ныне в Московском институте электронной техники). К этому направлению примыкают работы по изучению свойств неорганических соединений и характеристик металлургических процессов (В. П. Елютин, Ю. А. Павлов, В. П. Поляков, [c.13]

    Таким образом, к основным областям использования стеклоуглерода могут быть отнесены технологическая оснастка в различных высокотемпературных, процессах в бескислородной атмосфере, в том числе в особо агрессивных средах получение высокочистых металлов и соединений на их основе вакуумное напыление металлов, сплавов и полупроводниковых соединений лабораторная посуда для работ на воздухе до 50О°С, а в защитной среде — до значительно, 6олее высоких температур электроды для спектрального анализа и различных электрохимических процессов фильеры для протяжки калиброванной проволоки и нитеводители многодорожечные головки магнитных дисковых запоминающих устройств заменитель дорогостоящих металлов (платины, молибдена, титана и др.) [32, 34]. [c.162]

    Широко используют кадмий-никелевые аккумуляторы. Кадмий входит в состав некоторых сплавов, в частности полшмпниковьи. Небольшая добавка d к меди увеличивает ее прочность, а электропроводность при этом изменяется мало. Кадмиевые покрытия металлов обеспечивают защиту от коррозии. Сульфид dS и селенид dSe (ярко-красный) - пигментны в лаках и красках. Краме того, эти соединенна и теллурнд кадмия используют в полупроводниковых приборах. [c.566]

    Сплав, отвечающий химическому соединению, антимониду галлия, которое в твердом состоянии обладает полупроводниковыми свойствами, имеет емкость в минимуме около 48 мкф1см . Очевидно, это обусловлено тем, что антимонид галлия относится к типу полупроводниковых соединений, которые при плавлении теряют полупроводниковые свойства, т. е. плавятся по типу полупроводник — металл. [c.227]

    На основе практического использования достнжеш й химической науки в XI пятилетке должны быть рен ены такие важные задачи, как повышение прочностных свойств, коррозионной сто11-кости, тепло- и холодостойкости металлов и сплавов увеличение производства новых конструкционных материалов, пскрытий и изделий на основе металлических порошков и тугоплавких соединений развитие производства сверхчистых, полупроводниковых, сверхпроводящих, новых полимерных и композиционных материалов и изделий из них с комплексом заданных свойств разработка малооиерационных, малоотходных и безотходных технологических процессов создание методов более полного извлечения компонентов из руд. [c.353]

    В последние годы развитие химического эксперимента происходит в направлении не только его соединения с педагогической техникой (проекционной аппаратурой), но и с электроникой в направлении максимального сокращения времени для подготовки демонстрационных и лабораторных опытов (про-цессоризация химического эксперимента) . В этом плане для сборки и конструирования приборов по химии применяются радиотехнические материалы (монтажные провода, пластмассы и пластики, металлы и сплавы) и полупроводниковые детали (диоды, транзисторы, конденсаторы, резисторы). Все это позво- [c.152]

    Периодический закон — научная основа и метод многочисленных исследований. Назовем некоторые направления (темы), которые еще ждут дальнейших исследований. Это работы но теории химической связи и электронной структуры молекул химия комплексных соединений, включая редкоземельные элементы, а также соединения, имеющие полупроводниковый характер получение гю-лупроводниковых материалов, развитие химии твердого тела, синтез твердых материалов с заданным составом, структурой и свойствами поиски новых материалов на основе твердых растворов изоморфных боридов, карбидов, нитридов и оксидов переходных металлов IV и V групп получение сплавов и катализаторов на основе переходных элементов синтез неорганических веществ, включая неорганические полимеры получение веществ высокой [c.427]

    Самые незначительные примеси (порядка —10- 7о) посторонних элементов или их соединений делают материалы непригодными для применения их в новой технике. Например, присутствие в специальных сплавах миллионных долей процента примесей некоторых элементов резко снижает их качество незначительные посторонние включения делают многие металлы очень хрупкими, тогда как после тщательно очистки эти металлы становятся вязкими, ковкими и пластичными. Содержание в полупроводниковых материалах из особо чистых элементов и их соединений самых минимальных количеств посторонних элементов приводит к полной непригодности их для радиоэлектроники так в кремнии и германии, применяемых в производстве электронных приборов, содержание посторонних примесей не должно превышать 10 %, а в некоторых случаях не должно превышать одного атома нрнмесн на миллиард атомов кремния или германия. [c.20]


Смотреть страницы где упоминается термин Металлы, сплавы, полупроводниковые соединения: [c.110]    [c.73]    [c.16]    [c.73]    [c.253]    [c.498]    [c.293]    [c.355]    [c.591]    [c.361]    [c.362]    [c.361]    [c.362]    [c.14]    [c.418]    [c.245]    [c.386]    [c.410]    [c.734]   
Смотреть главы в:

Аналитическая химия серы -> Металлы, сплавы, полупроводниковые соединения




ПОИСК





Смотрите так же термины и статьи:

Металлы соединения

Металлы сплавы

Полупроводниковые сплавы

Сплавы и металлы металлов



© 2024 chem21.info Реклама на сайте