Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавов анализ и сурьмой

    Подготовка раствора для анализа. Чаще всего олово приходится определять в сплавах с другими металлами. Наиболее важные сплавы-олова — это различные бронзы (медь, олово, железо), припои (олово, свинец), типографские сплавы (сурьма, олово, свинец), латуни (цинк, медь, олово). В этих сплавах олово определяют после растворения навески в азотной кислоте, при этом, как было сказано, образуется нерастворимая -оловянная кислота. [c.173]


    Из мешающих элементов в медных сплавах чаще всего присутствуют олово, сурьма, железо, иногда серебро. При растворении сплава в азотной кислоте олово и сурьма выделяются в виде нерастворимых оловянной или сурьмяной кислот и должны быть отделены фильтрованием. Однако некоторое количество меди увлекается из раствора осадками этих кислот. Поэтому при точных анализах необходимо выделить следы меди из осадка оловянной и сурьмяной кислот. Это может быть достигнуто путем обработки осадка щелочным раствором сернистого натрия, причем олово и сурьма переходят в раствор в виде тиосолей  [c.208]

    В 128 рассматривается в качестве наиболее простого примера анализа металлического сплава определение сурьмы, олова и свинца в типографском сплаве, а в следующих параграфах — анализ силиката. [c.454]

    Применение амперометрических титрований к анализу технических сплавов. Титрование сурьмы в присутствии меди. [c.57]

    Макаров Е. С., Твердые растворы с дефектной решеткой в сплавах никель—сурьма>. Изв. Сектора физ-хим. анализа АН СССР, 16, вып. 1, 149 (1943). [c.649]

    Можно с уверенностью сказать, что такие методы, как измерение твердости, электропроводности, давления истечения и др., прочно вошли в практику физико-химического анализа благодаря работам Н.С. Курнакова и С. Ф. Жемчужного. В период с 1905 по 1915 г. С. Ф. Жемчужным были выполнены образцовые исследования многих двойных металлических сплавов цинк—сурьма (1905), магний — серебро (1905), кадмий—мышьЯк (1913) и др. [c.110]

    Черные металлы — чугун и сталь, занимая исключительно важное место в промышленности и технике, часто служат объектом анализа. Число элементов, которое может находиться в железных сплавах, очень велико, чем и определяется большое разнообразие их физико-механических и химических свойств. Наряду с давно применяемыми легирующими элементами (такими, как хром, никель, кобальт, ванадий, вольфрам), в практику черной металлургии и в последние десятилетия вошли новые компоненты (например, редкоземельные, цирконий, гафний, титан, тантал, ниобий), добавки которых позволяют получать черные металлы с еще более ценными качествами. Кроме того, растет внимание и к ряду элементов, присутствие которых даже в малых количествах, может существенно изменять качество металла. Сюда относятся мышьяк, медь, олово, сурьма, алюминий, цинк и др. Содержание этих компонентов также контролируется, особенно в высококачественных сталях. [c.473]


    При анализе полупроводникового сплава, содержащего индий, кадмий, олово и сурьму, навеску [c.184]

    Электролиз при регулируемом потенциале считается также лучшим методом удаления мешающих элементов из образцов перед анализом их методами спектрофотометрии, полярографии и др. Описанные выше электрогравиметрический и кулонометрический методы как раз и могут быть использованы для этих целей. В таких случаях сначала проводят электролиз для разделения элементов, а затем в оставшемся растворе определяют нужный металл. Приведем пример. Лингейн анализировал методом электролиза при регулируемом потенциале различные сплавы меди, применяя ртутный катод. Из солянокислых растворов медь выделялась вместе с сурьмой и висмутом. В оставшемся растворе автор полярографически определял свинец и олово, после чего осаждал эти элементы электролизом при более отрицательном значении потенциала. Наконец, после этого вторичного электролиза в оставшемся растворе были определены никель и цинк. Лингейн з приводит также и другие примеры избирательного осаждения с использованием ртутного катода. [c.355]

    Определение сурьмы в свинце, его сплавах и соединениях методами эмиссионного спектрального анализа [c.145]

    Припои оловянно-свинцовые. Спектральный метод определения примесей сурьмы, меди, висмута, мышьяка, железа и никеля Баббиты кальциевые. Метод спектрального анализа по литым стандартным металлическим образцам Свинец высокой чистоты. Спектральный метод определения ртути Порошок цинковый. Метод спектрального анализа Сплавы цинковые. Метод спектрального анализа Индий. Спектральный метод определения галлия, железа, меди, никеля, олова, свинца, таллия и цинка Индий. Спектральный метод определения ртути и кадмия Индий. Спектральный метод определения кадмия [c.822]

    В свинце [1379], свинцовом блеске [1531] и типографских сплавах [1481, 1482] Sb 1 10 3% определяют методами рентгенофлуоресцентного анализа по линии Sb К ,- В методе [1379] в качестве источника излучения для возбуждения спектров используют Ат. Сурьму в типографских [1553], антифрикционных [1088], свинцово-сурьмянистых и свинцово-оловянно-сурьмянистых спла- [c.148]

    Метод применен для анализа сплавов, содержащих 30—40% Ве. Определению рения не мешают 50 мкг Мо, 100 мкг У. Заниженные результаты получаются в присутствии ионов М , Сс1, В1. Такие элементы, как 8е, Аз, Те, выделяются в свободном состоянии. Мешающее действие сурьмы подавляется добавлением фторидов. Окислители N0 , СЮ3, СгаО , МпО, ВгОз мешают определению рения, разрушая окраску. [c.102]

    Спектральный анализ широко применяется для открытия и определения небольших количеств висмута, а также одновременно II других элементов в свинце, меди, олове, цинке, алюминии и их сплавах, сурьме, золоте, железе и стали, в некоторых рудах, минералах и горных породах, биологических материалах и других объектах. Чувствительность спектрального метода достигает 0,001% и меньше Bi, точность определения 5—10% при содержании от 0,1 до 0,001% Bi. [c.322]

    Сплавы мышьяка с сурьмой. Для анализа тонких пленок сплавов мышьяка с сурьмой предложен снектрофотометрический метод [1148]. [c.203]

    Метод спектрального анализа Серебряно-медно-цинковые припои. Спектральный метод определения свинца, железа и висмута Золотые сплавы. Спектральный метод определения массовой доли висмута, сурьмы, свинца и железа Сплавы платино-палладиевые. Метод спектрального анализа [c.823]

    Применение вофатита Р для анализа подшипниковых сплавов. Отделение меди от олова и сурьмы [394]. [c.307]

    Недеструктивный активационный метод применяется для определения ЗЬ в алюминии [841, 1688] и его сплавах [945], нитриде алюминия [421], аскорбиновой кислоте [1630], асфальте [982], висмуте [830, 1204, 1239] и его сплавах с сурьмой [48, 313], воздушной пыли [884, 13131, галените [21], германии [633, 1384, 1385], горных породах [230, 427, 541, 949, 1061, 1289], графите [106, 1207], железе, чугуне и стали [135, 884, 1128, 1129, 1556, 1652], индии [12711, карбиде кремния [468], кремнии [212, 762, 932, 950, 989, 1217, 1361], тетрахлориде кремния [1462] и эпитаксиальных слоях кремния [580], меди [1002], морских [642, 1427] и природных водах [4, 1040], нефти и нефтепродуктах [991, 1517], олове [1305], поли-фенолах [983], почвах [1528], растительных материалах [1316, 1528], рудах [466, 1270], свинце [835 -837, 1205, 1505, 1506], стандартных образцах металлов [1316], теллуре [5], титане [68], хроматографической бумаге [1409], циркалое [1099], эммитерных сплавах [625], трифенилах [8771 и фториде лития [331]. Благодаря высокой чувствительности и вследствие того, что для анализа, как правило, требуется небольшое количество анализируемого материала, эти методы часто используются в криминалистической практике [884, 892, 12961. Имеются указания [965] аб использова- [c.74]


    В немногочисленных работах, посвященных анализу сурьмы, не указывалось на наличие помех. Например, Саттур [160] не обнаружил никаких помех при определении сурьмы в сплавах свинца и меди. Для удержания сурьмы в растворе он добавлял фтористоборную кислоту. Позднее Мостин и Каннингхэм [262], определяя сурьму в металлургических материалах, отметили существование некоторых помех. Они подбирали эталонные и исследуемые растворы с учетом содержания кислоты и основного металла. Уиллис [c.136]

    Методика анализа сурьмы с использованием брикетированных образцов и искрового возбуждения описана в работе [257]. Способ приготовления образцов облегчает эталонирование могут быть применены эталоны, полученные из смесей порошков сурьмяного сплава и чистой сурьмы. Давление при прессовании 9 т/слг , диаметр таблетки 6 мм. Подобные образцы применимы и для анализа литых проб. Режим работы применявшегося источника возбуждения (генератор Фейсснера) в работе [257] не приведен. Длительность предварительного обыскривания 20— 30 сек. [c.152]

    Для других богатых свинцом сплавов, как, например, для типографского металла, баббита, содержащей и не содержащей сурьмы дроби, ход анализа выбирается в зависимости от определяемого металла. Например, если наряду со свинцом присутствует лишь олово, его определяют следующим образом. 1 г измельченного сплава нагревают до полного разложения в 20 мл азотной кислоты (плотн. 1,2), затем выпаривают, добавляют небольшое количество разбавленной азотной кислоты и снова выпаривают до тех пор, пока остаток не станет совершенно сухим. Затем доводят до кипения со 100 мл воды, отфильтровывают оловянную кислоту, которая содержит немного свинца, прокаливают ее и взвешивают. Взвешенное содержимое тигля сплавляют с содой и серой, плав выщелачивают водой, отфильтровывают нерастворимый сернистый свинец, известным образом переводят его в сернокислый и определяют отдельно. Сернокислый свинец пересчитывают на окись свинца и вычитают последнюю из взвешенной нечистой оловянной кислоты. Определение сурьмы в сплаве, содержащем сурьму, можно производить методом, описанным при гартблее. Определение мышьяка в дроби, не содержащей сурьмы, производят следующим образом. 2 г зерен дроби растворяют в разба-18ленной азотной кислоте, выпаривают с серной кислотой до появления белых паров, остаток от выпаривания извлекают разбавленной соляной кислотой и, прибавив немного сернокислой закиси железа для разрушения азэтной кислоты, если таковая еще окажется, перегоняют с сернокислым гидразином и бромистым натрием. Затем мышьяк можно определить известным способом—либо посредством титрования иодом, либо в виде грехсернистого мышьяка. [c.321]

    Изучены указанные вопросы для процессов электроосаждения из трилонатных растворов сурьмы, сплавов 8Ь - В1, - 1п, Си - 31, Ni - В1, Со - В1, Си - N1, Си - Со, В1. Установлено, что фазовый состав электро-осажденных сплавов зависит от потенциала осаждения и химического состава сплавов присутствие в растворе протонированных трилонатных комплексных частиц и гидроксокомплексов металлов снижает качество и выход по току сплавов в нестационарных условиях электроосаждения формируются сплавы с высокой степенью дефектности, причем структурные искажения кристаллических решеток носят деформационный характер твердость и коррозионная стойкость зависят от химического состава сплава. Методом рентгеноструктурного анализа установлена структура и фазовый состав изученных гальванических покрытий. [c.22]

    Примечание. Метасурьмяная кислота получается также при действии HNO3 на металлическую сурьму, что нужно иметь в виду при анализе сплавов, содержащих сурьму. [c.115]

    Анализ железнстосинеродистого электролита для осаждения сплава серебро — сурьма и определение состава покрытий [c.87]

    Механизм обесцинкования не получил еще удовлетворительного объяснения. Имеются две точки зрения. Первая предполагает, что первоначально протекает коррозия всего сплава, а затем медь осаждается на поверхности из раствора с образованием пористого внешнего слоя. Согласно второй, цинк, диффундируя к поверхности сплава, преимущественно растворяется прИ -а,том поверхностный слой обогащается медью. Каждую из этих гипотез можно успешно применить для объяснения явлений, наблюдающихся в определенных случаях обесцинкования. Однако накопленные факты свидетельствуют, что второй механизм применим намного чаще. Пикеринг и Вагнер [17, 18] предположили, что объемная диффузия цинка происходит вследствие образования поверхностных вакансий, в частности двойных. Они образуются в результате анодного растворения, а затем диффундируют при комнатной температуре в глубь сплава (коэффициент диффузии для дивакансий в меди при 25°С О = 1,3-10" см с) [17], заполняясь преимущественно атомами цинка и создавая градиент концентраций цинка. Данные рентгеновских исследований обесцинкованных слоев Б-латуни (сплав 2п—Си с 86 ат. % 2п) и -у-латуни (сплав 2п—Си с 65 ат. % 2п) показали, что в обедненном сплаве происходит взаимная диффузия цинка и меди. При этом образуются новые фазы с большим содержанием меди (например, а-латунь), и изменение состава в этих фазах всегда идет в сторону увеличения содержания меди. Как отмечалось ранее, аналогичные закономерности наблюдаются в системе сплавов золото— медь, коррозия которых идет преимущественно за счет растворения меди. Растворения золота из этих сплавов не обнаруживают. В результате коррозии на поверхности возникает остаточный пористый слой сплава или чистого золота. Скопления двойников, часто наблюдаемые в полностью или частично обесцинкованных слоях латуни, также свидетельствуют в пользу механизма, связанного с объемной диффузией [19]. Это предположение встречает ряд возражений [20], однако данные рентгеноструктурного анализа обедненных цинком слоев невозможно удовлетворительно объяснить, исходя из концепции повторного осаждения меди. Хотя предложен ряд объяснений ингибирующего действия мышьяка, сурьмы или фосфора на обесцинкование а-латуни (но не Р-латуни), механизм этого явления нельзя считать полностью установленным. [c.334]

    Ход анализа. Определение сурьмы. 1 г сплава в виде опилок или тонкой стружки переносят в коническую колбу, закрывают горло колбы воронкой, вливают 15 м.л концентрированной серной кислоты и нагревают содержимое колбы в вытяжном шкафу до кипения. Нагревание продолжают до тех пор, пока весь сплав не разложится. Приз ьаком полного разложения является исчезновение отдельных черных крупинок сплава на фоне белого осадка сернокислого свинца . После этого нагревают еще 15 мин. для удаления сернистого газа. Содержимое колбы охлаждают, затем осторожно приливают 100 мл воды и 10 мл концентрированной [c.457]

    В течение древнейшего периода (до нач. 13 в.) стали известны углерод, сера, железо, олово, свинец, медь, ртуть, серебро и золото. С 7 в. в Китае производился фарфор. В хтхим. период (до нач. 16 в.) были охарактеризованы мн. 1>1инерхты, открыты мышьяк, сурьма, висмут, цинк, изучены нек-рые сплавы (в частности, отдельные амальгамы), соли, иеск. к-т и щелочей. Возник пробирный анализ. В Европе с сер. 13 в. стала применяться, а В 15 в. и производиться селитра. [c.210]

    После получения представительной средней пробы исследуемого материала (см. Проба аналитическая) берут обычно большую навеску (до 100 г), т.к. содержание благородных металлов, как правило, низко. Навеску смешивают с шихтой. В состав последней входят коллектор (РЬО), флюсы (кварц, бура, сода и др.), восстановители (напр., древесный уголь, крахмал), иногда окислители (PbjO , KNO3 и др.). Состав и соотношение компонентов шихты определяется составом анализируемого материала. Обычно применяют тигельную плавку - восстановительно-раство-рит. плавление навески материала с шихтой при 1000-1150 С в огнеупорных (шамотных) тиглях объемом от 300 до 800 см . При этом РЬО восстанавливается до РЬ, происходит шлакование компонентов породы и образование сплава свинца с благородными металлами (веркблей). Жидкий расплав выливают в изложницы и после охлаждения веркблей отделяют от шлака. Одновременно с РЬО могут частично восстанавливаться оксиды др. металлов (меди, сурьмы, олова, никеля и т. д.), к-рые мешают дальнейшему анализу. [c.96]

    Отделение от сурьмы и олова. При анализе сплава таллия с этими металлами его растворяют в азотной кислоте, таллий переходит в раствор в виде TINO3, а олово п сурьма образуют малорастворимые метакислоты [615, 900], Отделение от мышьяка. Отделение можно осуществить отгонкой мышьяка в виде АзСЦ [453] или осаждением 1аллия в виде хромата или тионалидата. [c.68]

    Определение сурьмы в медв, ее соединениях и сплавах методами эмиссионного спектрального анализа [c.138]

    Преимз7пества спектрального анализа заключаются, как известно, п его высокой чувствительности (степень чувствительности зависит в значительной мере от техники эксперимента и качества аппаратуры), позволяющей успешно обнаруживать и полуколичественпо определять 0,001—0,1% висмута одновременно с другими элементами из минимальных навесок в свинце, меди, олове, сурьме, различных сплавах, минералах, рудах, горных породах, биологических материалах. Необычайная простота исследования обеспечивает быстроту определения при серийных анализах металлов. Спектральный анализ требует наличия сравнительно дорогой аппаратуры и специально подготовленных кадров. При помощи спектрального анализа в некоторых полиметаллических рудах был открыт висмут, произведены исследования громадного количества руд ц минералов на содержание висмута и других металлов, изучено распределение висмута в полупродуктах свинцовых заводов и др. [c.12]

    II используются для анализа разнообразных материалов, в том числе для определепия мышьяка в природных [1] и морских водах [357, 1074], биолЕогических материалах [578, 1075, 1078, 121(> , костях [916], ногтях и волосах [922], органических и растительных материалах [278, 294, 295, 816, 1068], нефтях [1172], соляной и азотной кислотах [489], водных растворах [1066, 1075], углероде [79()[, кремнии [239, 696, 800, 806, 1062], двуокиси кремния особой чистоты [404], тетрахлорнде кремния [220], германии [669, 948, 1033], двуокиси герма]гия вь(сокой чистоты [1033,. 1075], сурьме [140], сурьмяно-железных сплавах [600], селене [970, 1024], сере [447, 669, 1032], литии и его соединениях [29, 295], фосфоре [42, 475, 517], вольфраме [767], бериллии [272, 293], таллии [9], свинце [533, 747, 803, 1003], титане и двуокиси титана [947], олове и двуокиси олова [887, 1015], цинке [476, 668] и цинковых электролитах [597], алюминии [333, 534, 1216], индии [477], антимониде [c.112]

    Холостой опыт. Грязная посуда является основным источником погрешностей анализа. Тигли могут содержать остатки растворов или сплавов от предыдущих анализов. Кварц содержит примеси алюминия, железа, магния, натрия, титана и сурьмы. Соединения некоторых элементов выщелачиваются из стекла оксиды кремния и натрия, мышьяк, бор, медь, железо, алюминий, фтор, свинец, цинк. При выпаривании досуха фтороводородной или фосфорной кислот в платиновых сосудах растворяется 10-20 мкг платршы, при выпаривании концентрированной хлороводородной кислоты — 30-80 мкг платины. [c.862]

    СНд-ПАР [276], ПАН-2 [8, 87, 91, 596, 626], комплексонат меди с ПАН-2 [625], МАР [2]. При определении 3,4—6,8 м.г галлия 50-кратные количества индия, висмута и кадмия предложено маскировать N-метилглициндитиокарбаминатом [57]. При анализе полупроводниковых сплавов и смесей для холодной пайки [127] золото и медь восстанавливают тиосульфатом, сурьму(П1) маскируют винной кислотой, алюминий — борофторидом. В глицериновых ваннах, содержащих галлий и индий, галлий экстрагируют диэтиловым эфиром из среды 6 М НС1, затем реэкстрагируют и определяют комплексонометрически [596]. Селективность определения резко увеличивается после отделения галлия осаждением диантипирил-пропилметаном в кислой среде [91] или экстракции комплекса хлороформом с последующей реэкстракцией галлия [8]. В последнем случае определению 9,3 м.г галлия не мешают (в мг) А1 — 131 Th — 127 Mg — 118 Со — 105 d — 100 Pb — 60 Мп — 37 и Ni — 36 мешают Bi, In и Tl [8]. [c.170]

    Таллий в форме соли его комплексного бромидного аниона с родамином В экстрагируют диизопропиловым эфиром и экстракт фотометрируют. Методика применена для определения таллия в оловокадмиевых сплавах [331]. Сходная методика предложена для определения сурьмы и таллия в свинце [332]. Для определения сурьмы в цинке и окиси цинка экстракцию комплекса производят из солянокислого раствора [333]. Экстракцию индия рекомендуется производить из бромидных растворов с помощью родамина В [334]. Тантал определяют путем экстракции этилацетатом соединения танталфтористоводородной кислоты с родамином В. Экстракт фотометрируют при 556 ммк [335]. Соединение урана (VI) с родамином В и бенз011н0н кислотой экстрагируют бензолом, экстракт фотометрируют. Методика предложена для анализа урансодержащих материалов [336]. [c.252]

    Творческий путь академика В. А. Каргина начался в 1924 г. в лаборатории Физико-химического института им. Л. Я. Карпова в качестве химика-лаборанта. В это время им были выполнены химические анализы вновь открытых минералов, глин и сплавов и описаны их физические свойства и минералогический состав. К числу таких минералов относятся урано-ванадаты вновь открытого месторождения Тюя-Муюна и узбекит. Прежде всего эти работы характеризуются высоким качеством проведенных химических анализов как по точности, так и по числу определяемых элементов. При определении сурьмы в баббите [1] В. А. Каргин уточняет и усовершенствует применявшийся ранее метод титрования броматом. Он предлагает практический способ определения сурьмы в присутствии мешаюш,их определению примесей свинца, олова и меди с достаточной степенью точности. Хочется отметить, что уже в самых ранних работах [c.18]

    В анализе горных пород малые количества мышьяка не создают затруднений, так как мышьяк (П1), остающийся в растворе после разложения образца горной породы, улетучивается во время выпаривания с соляной кислотой при обезвоживании кремнекислоты. Мышьяк (V) осаждается в виде основного арсенита железа или алюминия вместе с осадком от аммиака и, вероятно, целиком восстанавливается и улетучивается при последующем сожжении фильтра с осадком и прокаливании. Иное дело при анализе продуктов металлургического производства, навеску пробы которых обьгчно обрабатывают окисляющими растворами. Например, при анализе черных металлов присутствие мышьяка затрудняет определение в них фосфора при анализе сплавов цветных металлов присутствие мышьяка может помешать определению олова, сурьмы и меди. [c.302]

    В цинке Фишер и Леопольди [37", 38 ], а также Иошино и Койима [55 ] определяли менее 1 10 % кадмия (ср. раздел г, 1). В сурьме, мыщьяке, впсмуте, олове, свинце, железе и других металлах можно определить 1-10 3% кадмия с точностью 5% [37 ]. Сильверман и Трего [52 ] сначала концентрировали ионы Сс1 + при анализе свинца или свинцовых сплавов экстрагированием раствором дитизона в четыреххлористом углероде, затем разлагали органический экстракт кислотой и опреде- [c.266]


Смотреть страницы где упоминается термин Сплавов анализ и сурьмой: [c.392]    [c.41]    [c.291]    [c.440]    [c.84]    [c.132]    [c.224]    [c.738]    [c.96]   
Аналитическая химия сурьмы (1978) -- [ c.123 ]




ПОИСК





Смотрите так же термины и статьи:

Сурьма сплавах



© 2024 chem21.info Реклама на сайте