Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие газов с расплавленными солями

    Расплавленные соли проявляют высокую способность к сольватации. Газы часто растворяются либо вступая в химическое взаимодействие, либо просто заполняя свободные пространства в расплаве (дырочная модель). Основная проблема при работе с расплавленными солями связана с их загрязнением многими растворимыми неорганическими солями, а также и огнеупорными материалами. В расплавах гидрооксида щелочного металла присутствие кислорода или воды приводит к образованию перекисей, которые растворяют как благородные металлы, так и керамику. Во многих случаях расплавленные соли растворяют также основной металл. Металл прекрасно диспергируется по всей среде и придает ей свойства, характерные для металла, например увеличивает электропроводность [71]. [c.126]


    Растворимость газов (кислорода, хлора, хлористого водорода, водяных паров и др.) в расплавленных солях мала. Однако растворы газов — окислителей в расплавленных солях вызывают значительную коррозию, даже если они не имеют непосредственного контакта с газовой средой. Кроме того, хлор может появляться в хлоридных расплавах вследствие взаимодействия кислорода воздуха с ионами хлора расплава [c.365]

    Известно, что газы растворяются в солевых расплавах. Если растворение протекает без химического взаимодействия (например, в случае благородных газов, азота [247—250] и т. п. [251—253]) или с незначительным специфическим взаимодействием (например, хлор в расплавленных хлоридах щелочных и щелочноземельных металлов [254—267], хлористый водород [19, 268—272] и т. п.), то растворимость их возрастает с повышением температуры. При ярко выраженном химическом взаимодействии растворяемого газа с солевой средой, как, например, четыреххлористого титана в расплавах хлоридов цезия [274], рубидия [275] и калия [276, 277], раствО римость с повышением температуры уменьшается. Когда растворенный газ может выступать в роли окислителя по отношению к металлу, его растворы в расплавленных солях вызывают коррозию последнего, причем даже в отсутствие непосредственного контакта с газовой средой. [c.181]

    Значительную помощь в решении вопроса о молекулярном состоянии расплавленных солей оказывает кристаллохимия . Если в твердом состоянии кристалл построен из ионов, то можно предположить, что и расплав будет иметь ионную структуру, так как высокая температура должна способствовать диссоциации солей. Изменять положение может лишь взаимодействие солей в расплаве, что, безусловно, скажется на величине электропроводности. Беляев указывает, что расплавы при температуре электролиза имеют строение, более близкое к твердому состоянию, чем к газам. С повышением температуры степень неупорядоченности , имеющаяся в твердых кристаллах, растет и соответственно возрастает электропроводность расплавов. Взаимодействуя между собой в расплаве, часть, ионов может образовывать сложные комплексные группировки. Это особенно относится к мнОгозарядным ионам при небольших их радиусах. На электродах наряду с простыми ионами могут разряжаться и комплексные, К сожалению, о разряде комплексных ионов в расплавах в литературе имеется пока мало данных ".  [c.409]


    Процесс электролиза расплавов осложняется высокой химической активностью продуктов электролиза, возможностью их взаимодействия с газами воздуха, с электролитом и с материалами, из которых изготовлена ванна. Продукты электролиза должны быть полностью разделены, а вещества, применяемые в качестве элект-тролитов, не должны содержать посторонних примесей. Температура плавления многих окислов и солей бывает высокой. Поэтому в электролит добавляют такие вещества, которые снижали бы ее. [c.219]

    В жидкостях в отличие от газов доминируют те же межмолекулярные силы притяжения, которые обусловливают тот или иной тип связи в кристалле. Так, например, между атомами сжиженных инертных газов действуют ван-дер-ваальсовы силы. Те же силы вызывают взаимное притяжение молекул неполярных жидкостей. Молекулы воды, кислот жирного ряда и спиртов взаимодействуют друг с другом посредством водородных связей, возникновение которых связано с наличием в их составе гидроксильных групп ОН. В расплавах солей действуют электростатические силы притяжения, в металлах — силы металлической связи. [c.10]

    Важной особенностью хлорирования В2О3 в расплаве солей является отсутствие образования фосгена. Это обстоятельство можно объяснить тем, что вследствие незначительного избытка углерода и рассредоточения eroi по всему объему расплава реакция идет преимущественно по уравнению (7.9), а оксид углерода, который присутствует в реакционных газах (в небольшом количестве), может быть источником образования фосгена только при взаимодействии с хлором на поверхности углерода. [c.134]

    В настоящей работе приводятся результаты исследований взаимодействия висмута, свинца и цинка с расплавленными хлоридами щелочных металлов, содержащими ионы циркония. В опытах жидкие металлы выдерживали при заданной температуре в контакте с расплавами солей под атмосферой инертного газа — аргона. Для наблюдения за развитием реакции периодически измеряли потенциалы металла относительно хлорного электрода сравнения. После необходимой для достижения равновесия выдержки, когда потенциал электрода менялся не более, чем на 2 мв за 1 ч, расплав быстро охлаждали и производили анализ металлической и солевой фаз. В работе использовали чистые хлориды калия и натрия, ио-дидный цирконий, спектрально чистые свинец и висмут, металлический цинк Ц-0. Тетрахлорид циркония получали хлорированием [c.266]

    Газ на выходе из реактора 2 после промывки содержит азот, углекислый газ, пары воды и некоторое количество кислорода. Часть этого газа сбрасывают в атмосферу другую часть используют для транспорта солевого расплава из нижней части реактора окисления в реактор хлорирования/оксихлорнрования 4. В реакторе хлорирования/оксихлорирования, заполненном насадкой, расплав соли движется противотоком газовому потоку, содержащему метан, хлор или хлористый водород, а также углеводороды рецикла. При взаимодействии реакционной смеси с катализатором происходит хлорирование, оксихлорирование и дегидро- [c.397]

    Процессы в расплаве являются вариантом газификации угля в режиме уноса. В них уголь и газифицирующий агент подаются на поверхность расплавов металлов, шлаков или солей, которые играют роль теплоносителей. Наиболее перспективен процесс с расплавом железа, поскольку можно использовать имеющиеся в ряде стран свободные мощности кислородных конвертеров в черной металлургии [97]. В данном процессе газогенератором служит полый, футерованный огнеупорным материалом аппарат-конвертер с ванной расплавленного (температура 1400—1600°С) железа. Угольная пыль в смеси с кислородом и водяным паром подается с верха аппарата перпендикулярно поверхности расплава с высокой скоростью. Этот поток как бы сдувает образовавшийся на поверхности расплава шлам и перемешивает расплав, увеличивая поверхность его контакта с углем. Благодаря высокой температуре газификация проходит очень быстро. Степень конверсии углерода достигает 98%, а термический к. п. д. составляет 75— 80%. Предполагается, что железо играет также роль катализатора газификации. При добавлении в расплав извести последняя взаимодействует с серой угля, образуя сульфид кальция, который непрерывно выводится вместе со шлаком. В результате удается освободить синтез-газ от серы, содержащейся в угле, на 95%. Синтез-газ, полученный в процессе с расплавом, содержит 677о (об.) СО и 28% (об.) Нг. Потери железа, которые должны восполняться, составляют 5—15 г/м газа. [c.97]

    Проведение опыта. Пробирку закрепить вертикально в штативе и поместить в нее немного нитрата калия. Нагреть соль до плавления. Как только начнется разложение соли, о чем можно судить по появлению пузырьков газа, раскалить кусочек угля и, не прекращая нагревания пробирки, бросить его в расплав. Уголек продолжает гореть и прыгает по поверхности расплава. Когда уголек полностью сгорит, убрать горелку, подставить под пробирку поднос с песком и бросить в нее несколько маленьких кусочков серы. Сера вспыхивает и горит ослепительным пламенем, пробирка раскаливается добела. Наблюдаемые явления объясняются энергичным взаимодействием углерода и серы с кислородом, выделяющимся при термическом разложении нитрата калия. [c.68]


    Тетрафторид урана может быть получен либо осаждением его растворимыми фторидами из водных растворов четырехвалентного урана, либо сухим методом, путем взаимодействия соединений урана, в частности иОг, с фторирующими агентами при повышенных температурах. Обычно UF4 получают путем фторирования фтористым водородом UO2, приготовленной восстановлением высших окислов урана водородом. Тетрафторид урана различного изотопного состава получают восстановлением UFs водородом. Электролитическим восстановлением водных растворов иона уранила в присутствии HF можно непрерывно получать UF4. Тетрафторид урана осаждается из водных растворов в виде очень устойчивого UF4 2,5F[20. Предпринимавшиеся попытки полностью извлечь гидратную влагу из тетрафторида урана простым нагреванием в токе инертного газа обычно оказывались безуспешными. Тетрафторид, получаемый этим методом, почти всегда содержит небольшие количества окиси, образовавшейся при его гидролизе. Для получения чистого безводного UF4 из осажденного гидрата необходимо обработать его при 400—500° С газообразным фтористым водородом. Безводный IJF4 требуется в производстве металлического урана и гекса-фторида урана. Холодные концентрированные минеральные кислоты слабо воздействуют на тетрафторид урана, но он растворяется в кипящей H2SO4 и в сильных кислотах, к которым добавлена борная кислота, образующая с нонами фтора комплексы ВРГ. В образовавшихся растворах уран находится в форме ионов четырехвалентного урана. Тетрафторид урана образует ряд двойных солей с фторидами металлов. Эти соли очень устойчивы и могут быть получены из солевых расплавов, содержащих UF4, или осаждены из водных растворов. [c.114]

    Вторая существенная особенность расплавленных солей, затрудняющая их.изучение, состоит в том, что частицы расплава электростатически заряжены. Объяснение термодинамических свойств растворов электролитов на заре теоретической химии вызывало большие трудности, порожденные дальнодействую-щим характером кулоновского взаимодействия, в корне отличного от взаимодействия Леннарда-Джонса, часто используемого в качестве потенциальной энергии атомов благородных газов. Из решения, предложенного Дебаем и Хюккелем в их основополагающей работе [1], стало ясно, насколько значителен эффект этих дальнодействующих сил. Характерно, что различные равновесные свойства разбавленных растворов электролитов в растворителях-неэлектролитах, поддающиеся измерению, не могут быть представлены в виде степенных рядов по концентрации соли, как это делается для растворов неэлектролитов. [c.77]

    Проведено исследование электрокинетических и структурных свойств мембран из расплавов жирных кислот стеариновой, пальмитиновой, миристиновой и лауриновой и их кальциевых и магниевых солей. Установлено, что вое исследованные мембраны обладают значительной электрохимической активностью, причем мембраны из магниевых солей являются бп,пее активными, чем из кальциевых. Исследование структуры мембран было проведено рпзличными методами рентгеноструктурного анализа, капиллярной конденсации водяных паров, протекаемости по воде и по газу. Полученные образцы являются сплошными твердыми телами, не обладающими заметной капиллярной пористостью. При взаимодействии образцов мембран с водными растворами возникает вторичная нерегулярная пористость за счет микро- и ультрамикротрещин, которая оказывает влияние на электрохимическую активность таких мембран. [c.186]


Смотреть страницы где упоминается термин Взаимодействие газов с расплавленными солями: [c.494]    [c.679]    [c.93]    [c.18]    [c.842]    [c.344]    [c.133]   
Смотреть главы в:

Справочник по электрохимии -> Взаимодействие газов с расплавленными солями




ПОИСК







© 2025 chem21.info Реклама на сайте