Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие окиси азота с кислородом воздуха

    Над водой можно собирать те газы, растворимость которых в воде мала окись азота, кислород, метан. Непосредственно, заполняя сосуд на воздухе, могут быть собраны все газы, кроме окиси азота, которая взаимодействует с кислородом воздуха, образуя двуокись азота  [c.216]

    Из первого уравнения видно, что двуокись азота МОг является окислителем, восстанавливаясь до окиси азота N0. При взаимодействии с кислородом воздуха окись азота вновь превращается в двуокись, являясь таким образом переносчиком [c.89]


    Мысль о том, что в основе механизма каталитических реакций лежит образование промежуточных веществ, высказывалась еще на рубеже XIX в. Так, например, Клеман и Дезорм (см. [1683]) в связи е изучением каталитического действия окиси азота на окисление сернистого газа полагали, что окись азота заимствует кислород из атмосферного воздуха и образует с ним некоторое промежуточное соединение, которое, взаимодействуя с сернистым газом, передает ему кислород и снова превращается в окись азота. Последняя окисляется воздухом и передает кислород сернистому газу и т. д. [c.34]

    Значительное прямое взаимодействие аз ота с кислородом воздуха можно вызвать, пользуясь искусственным приемом. Получающееся в этом случае соединение — окись азота N0 хотя и стабильно при очень высоких температурах, однако равновесие [c.635]

    Получающаяся окись азота взаимодействует с кислородом воздуха, превращаясь в двуокись азота. Следовательно, в нитрозном методе N0 является катализатором. [c.287]

    При комнатной температуре германий не окисляется на воздухе. Выше 700° начинает взаимодействовать с кислородом воздуха. Выше температуры плавления испаряется и сгорает с образованием белой двуокиси. При нагреве порошкообразного германия в токе азота или аргона, содержащего небольшие количества кислорода (менее 1%), наблюдается интенсивная возгонка при 800—850°. Сублимат — окись GeO с примесью азотистых соединений [121- [c.165]

    Окись азота — бесцветный газ, малорастворимый в воде и химически с ней не взаимодействующий (т. е. является несолеобразующим окислом). Окись азота легко присоединяет кислород воздуха, окисляясь при этом до бурой двуокиси азота ЫОг  [c.228]

    Химически аммиак очень активен. Он легко вступает в реакцию с кислотами и их ангидридами, образуя соли аммония. В присутствии воздуха и воды он реагирует с некоторыми металлами. Аммиак реагирует со многими неорганическими и органическими веществами с образованием комплексных соединений. В присутствии катализаторов он взаимодействует с кислородом, образуя окись азота. На этом свойстве основан современный способ получения азотной кислоты. [c.10]

    Окисление окиси азота, полученной при окислении аммиака воздухом, проводят Б нескольких башнях, орошаемых азотной кислотой такой концентрации, при которой не происходит активного поглощения окислов азота. Циркулирующая в башнях кислота отводит тепло окисления N0, что способствует ускорению реакций образования высших окислов азота. Однако полного окисления ЫО кислородом воздуха трудно достигнуть вследствие резкого уменьшения скорости реакции по мере понижения концентрации окиси азота. Степень конденсации окислов азота, или степень их растворения в концентрированной азотной кислоте, зависит от степени окисления ЫО. Поэтому оставшуюся после прохождения окислительных башен окись азота превращают в ЫОг при взаимодействии с концентрированной азотной кислотой по реакции [c.289]


    Кислород образует соединения со всеми химическими элементами, кроме гелия, неона и аргона. С большинством элементов он взаимодействует непосредственно (кроме галогенов, золота и платины). Скорость взаимодействия кислорода как с простыми, так и со сложными веществами зависит от природы вещества и от температуры. Некоторые вещества, например, окись азота, гемоглобин крови, уже при комнатной температуре соединяются с кислородом воздуха со значительной скоростью. Многие реакции окисления ускоряются катализаторами. Например, в присутствие дисперсной платины смесь водорода с кислородом воспламеняется при комнатной температуре. Характерной особенностью многих реакций соединения с кислородом является выделение теплоты и света. Такой процесс называется горением. [c.373]

    Катализатором при окислении аммиака является специальная сетка иа платины с примесью родия. Схема производства азотной кислоты дана на рисунке 57. Смесь аммиака и воздуха направляется в смеситель 1, очищается от пыли и поступает в контактный аппарат 2, где находится катализатор, нагретый электрическим током и нагреваемый затем теплом самой реакции. Полученная окись азота поступает в окислительную башню 3, где и превращается в двуокись азота. Последняя направляется в поглотительную башню 4. Взаимодействуя с водой, двуокись азота дает азотную и азотистую кислоты, но в присутствии кислорода азотистая кислота также окисляется до азотной. [c.195]

    Азот является инертным газом и с трудом вступает во взаимодействие с другими веществами. При высоких те.мпературах азот соединяется с кислородом, образуя окись азота. Азот не токсичен. При больших концентрациях N2 и недостатке кислорода в воздухе наступает удушье. [c.11]

    Образующаяся в этой реакции окись азота(П) в результате взаимодействия с кислородом вводимого воздуха снова превращается в окись азота(1У)  [c.382]

    Как уже было сказано, окись азота(П) легко взаимодействует кислородом воздуха, образуя окись азота(1У)  [c.417]

    Химические реакции, осуществляемые в процессе создания контролируемых атмосфер из СНГ в смеси с воздухом, весьма разнообразны. Они обязательно сводятся к удалению кислорода. Помимо остаточного кислорода и азота защитные атмосферы в различном соотношении содержат двуокись и окись углерода, водород, пары воды и углеводороды. Дальнейшее изменение состава газовой среды требует специальных реакций. Поскольку двуокись углерода может взаимодействовать с определенными металлами и углеродом, содержащимся в стали, ее содержание в этой атмосфере необходимо снижать или полностью исключать. Для обеспечения взаимодействия между углеродом и поверхностью сплава металла (карбюризация) дополнительно может быть конвертирован пропан, а для нитрирования (азотирования) поверхности стали — введен аммиак. При термообработке стали нежелательно иметь высокую точку росы избыточной влаги, поэтому перед подачей на термообработку газы следует предварительно осушать, а окись углерода удалять во избежание поверхностного науглероживания низкоуглеродистых марок стали. [c.318]

    На полноту выделения меди оказывает вредное влияние присутствие в растворе даже незначительных следов азотистой кислоты. Это объясняется тем, что при взаимодействии меди с азотистой кислотой образуется окись азота N0, которая быстро окисляется кислородом воздуха до двуокиси. Последняя образует с водой азотную и азотистую кислоты, а НЫОз снова окисляет осажденную медь. Чтобы з далить азотистую кислоту, нужно перед электролизом тщательно прокипятить раствор. [c.206]

    Для полного и быстрого горения газа необходимо создать хорошие условия перемещивания его с воздухом в соотнощени-ях, обеспечивающих протекание реакций взаимодействия между горючими компонентами и кислородом. Реакции полного сгорания комлонентав горючего газа и тепловой эффект горения представлены в табл. 27. Приведенные данные показывают, что при горении газов получаются продукты горения, состоящие из углекислоты и водяных паров. Если в газе содержатся сернистые соединения (например, сероводород), то в продуктах сгорания будет находиться сернистый газ. В дымовых газах также будут содержаться азот воздуха, поступивщего на сжигание таза, и избыточное (неизрасходованное) количество кислорода воздуха. При недостаточном поступлении воздуха в продуктах сгорания, как правило, содержится и окись углерода — продукт неполного горения углеводородных газов, а также несгоревшие компоненты газа. [c.115]

    Мысль о том, что в основе механизма каталитических реакций лежит образование промежуточных веществ, высказывалась еще на рубеже XIX века. Так, например, Клеман и Дезорм [1307] (1806), в связи с изучением ими каталитического действия окиси азота N0 на окисление сернистого газа ЗОг, полагали, что окись азота заимствует кислород из атмосферного воздуха и образует с ним некоторое промежуточное соединение,, которое, взаимодействуя с сернистым газом, передает ему кислород и обратно превращается в окись азота. Последняя снова окисляется воздухом и снова передает кислород сернистому газу. Таким образом, согласно представлениям Клемана и Дезорма, гомогенно-каталитическая реакция в данном случае представляет собой совокупность чередующихся окислительных и восстановительных процессов. Конкретный химический механизм этой реакции предлагался различными авторами. Наиболее близок к представлениям Клемана и Дезорма механизм, предложенный Берцелиусом [13071 (1835). Этот механизм представляет собой чередование двух процессов [c.41]


    Окись азота, присоединяя кислород из воздуха, превраш,ается в двуокись азота (см. стр. 117). Последняя, взаимодействуя с водой, образует азотную кислоту (см. стр. 117). Так получают45—60%-ную НМОз, концентрацию которой можно повысить до 96—98% путем перегонки в присутствии концентрированной серной кислоты.  [c.121]

    Окись азота, присоединяя кислород из воздуха, превращается в двуокись азота (уравнение реакции см. выше). Последняя, взаимодействуя с водой, образует азотную кислоту (уравнение реакции см. выше). Так получают 45%—60%-ную HNO3, которая может быть сконцентрирована до 96%—98% путем перегонки в присутствии концентрированной серной кислоты. [c.164]

    Получение нитратов калия и натрия взаимодействием хлоридов с двуокисью азота или с азотной кислотой является одним из наиболее экономичных путей производства этих продуктов при условии использования хлора, выделяющегося в газовую фазу в виде I2, НС1 и NO I. Особенно важно использование хлористого нитрозила, так как в противном случае потеря содержащегося в нем азота сделает производство нерентабельным. Хлористый нитрозил может быть окислен до NOg и lg кислородом воздуха в присутствии концентрированной азотной кислоты или катализаторов МпО2, FojOg и др. Хлористый нитрозил может быть использован также для хлорирования окислов и других веществ освобождающаяся при этом окись азота может быть переработана в азотную кислоту. Существуют и другие методы переработки хлористого нитрозила. В последнее время этот способ привлекает внимание еще и потому, что хлористый нитрозил, ранее не находивший применения, может быть использован для получения полупродуктов в производстве полиамидных смол. [c.302]

    Инертных газов металлический литий не растворяет. При взаимодействии лития с воздухом образуется продукт, где соотношение ЫгОл 3 1. При высокой влажности (100%) нит-ридообразование уступает место процессу образования гидроокиси лития ЫОН, которая частично карбонизируется [28]. Литий взаимодействует с азотом особенно интенсивно лишь при 300° С и полностью превращается в нитрид лития при 350° С. С сухим кислородом при низких температурах литий не реагирует, но при 200° С горит, при этом образуется окись лития. Пе-рекисные соединения лития вследствие сильного поляризующего действия его иона не образуются. [c.13]

    В компактном состоянии нри обычной температуре металлический рений не взаимодействует с кислородом воздуха. Тонко измельченный металлический рений окисляется при обычной температуре во влажном кислороде с образованием рениевой кислоты. При нагревании порошка металлического рения выше 150° (или компактного металла до 350°) на воздухе или в токе кислорода образуется летучая окись ВваОт. При неполном окислении рения на воздухе или в кислороде образуется ВеОа- Металлический рений значительно более устойчив по отношению к кислороду, чем вольфрам или молибден. Рениевая проволока подвергается действию смеси воздух + азот, содержащей 10% кислорода, только при температурах выше 1600°. При легировании устойчивость рения но отношению к кислороду значительно понижается. [c.445]

    После прохождения через катализатор газы поступают в окислительные башни. В этих башнях N0 в результате взаимодействия с воздухом превращается в NO2, а образовавшаяся окись азота(1У) поступает затем в конденсационные башни, где яроисходит реакция с водой. Таким образом получают 60%-ную азотную кислоту, из которой путем перегонки с концентрированной серной кислотой, удерживающей воду, получают 98%-ную азотную кислоту. Некоторые современные процессы ведут под давлением, заменяя воздух кислородом. В результате сразу получают концентрированную. азотную кислоту. [c.420]

    При комнатной температуре германий не окисляется на воздухе, выше 700° начинается окисление. Выше температуры плавления испаряется и сгорает, образуя белую двуокись. Если нагревать порошкообразный германий в токе азота или аргона, содержащего менее 1% кислорода, то при 800—850° он интенсивно возгоняется сублимат — окись GeO с примесью азотистых соединений [4]. Вода совершенно не действует на германий. Он вполне устойчив по отношению к соляной и разбавленной серной кислотам. Концентрированная серная, а также плавиковая кислоты взаимодействуют с германием при нагревании. Азотная кислота окисляет его с поверхности. Растворяется в царской водке, в солянокислых растворах ЕеС1з, в щелочных или аммиачных растворах HjOj. Под действием 10%-ного раствора NaOH тускнеет, тогда как концентрированные растворы щелочей на него не действуют. Расплавленные щелочи, напротив, быстро его растворяют [1, 2]. [c.155]

    Элементная сера химически активна и взаимодействует почти со всеми элементами, за исключением азота, иода, золота, платины и инертных газов. При комнатной температуре во влажном воздухе сера слабо окисляется с образованием следов ЗОо или Н2304. При 280° С она горит в кислороде, а при 360° С — в воздухе с образованием ЗОа и ЗОд. Смесь паров серы и кислорода взрывается. В особых условиях могут быть получены неустойчивые окислы серы. При действии тлеющего разряда на смесь ЗО2 с парами серы образуется моноокись 30 — бесцветный газ, устойчивый при сравнительно высокой температуре при низкой же температуре в зоне тихого разряда моноокись диспропорционирует 330 ЗО2 -Ь + З2О. При взаимодействии серы с совершенно безводной ЗОд образуется полуторная окись 320д — голубоватые кристаллические чешуйки, тотчас же разлагаемые водой. При действии тихого электрического разряда на смеси ЗО2 и О2 или ЗОд и О2 образуются высшие кислородные соединения серы. Семиокись 8207 (маслянистые капли, затвердевающие при 0° С) легко разлагается с выделением кислорода, особенно в присутствии воды. Четырехокись ЗО4 — твердое белое вещество, плавящееся с разложением при +3° С, сильный окислитель. Установлено, что высшие окислы 304, З2О7, ЗдО]д представляют собой полимеры, отвечающие формулам (30д,д) . (30д,в)з.. [c.17]

    При обычной температуре висмут на воздухе устойчив, при температуре красного каления он сгорает с синеватым пламенем в желтую окись BijOg. С хлором порошкообразный висмут соединяется со вспышкой. При нагревании он взаимодействует с бромом, иодом, а также с серой, селеном и теллуром. С азотом и фосфором висмут непосредствепно не соединяется. Вода при обычной температуре на висмут не действует, если она не содержит растворенного кислорода. При прокаливании в атмосфере водяного пара висмут медленно окисляется. В неокисляющих кислотах висмут нерастворим не действует на него и холодная концентрированная серная кислота. В горячей концентрированной серной кислоте висмут растворяется с выделением двуокиси серы. Самый лучший растворитель для висмута — азотная кислота. [c.727]

    Гидрид урана — весьма реакционноспособное соединение. Иа воздухе сгорает, образуя воду и закись-окись урана. С чистым кислородом иНз реагирует с воспламенением. При температурах выше 200° С иНз реагирует с азотом и аммиаком, образуя нитриды продуктами реакции с галогенами и галогеноводородами являются различные галогениды урана. С парами воды выше 350° С реакция протекает с образованием UO2. Гидрид урана растворяется в HNO3, концентрированной H IO4 и горячей концентрированной H2SO4, не растворим в щелочах и жидком аммиаке. Органические растворители не реагируют с иНз, но галогенированные растворители (например, ССЦ) взаимодействуют со взрывом. [c.265]


Смотреть страницы где упоминается термин Взаимодействие окиси азота с кислородом воздуха: [c.714]    [c.10]    [c.207]    [c.84]    [c.183]    [c.347]    [c.28]    [c.529]    [c.40]    [c.327]    [c.401]    [c.713]    [c.187]    [c.305]   
Смотреть главы в:

Лекционные опыты по общей химии -> Взаимодействие окиси азота с кислородом воздуха




ПОИСК





Смотрите так же термины и статьи:

Азот кислород

Взаимодействие с кислородом

Воздух, кислород, азот

Кислород воздухе



© 2025 chem21.info Реклама на сайте