Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Использование радиоактивности в медицине

    В настоящее время радиационно-химические реакции используются в химической промышленности в производстве различных полимеров и некоторых других химических продуктов, в медицине при лечении ряда заболеваний. В пищевой промышленности перспективным является использование радиоактивного излучения, главным образом р- и у-лучей, для стерилизации, пастеризации и дезинсекции пищевых продуктов пищевого сырья, для задержания прорастания картофеля при его хранении. [c.102]


    Современная медицина немыслима без использования этого метода. Широко применяются радиоизотопы золота. Четырнадцать радиоактивных изотопов золота могут быть получены как бомбардировкой нейтронами, протонами, дейтронами, а-частицами, так и при воздействии у-излучением на мишени из природного золота, включающего устойчивый изотоп эAu. Используют также элементы иридий, платину, ртуть, таллий. Наиболее широко применяют радиоактивные изотопы золота 1 "Аи и 1 >Аи. Изотоп золота " Au Ру ожно получить, например, в результате следующих ядерных реак- [c.73]

    Использование радиоактивных изотопов. Радиоактивные изотопы нашли широкое применение в различных областях науки и техники. Они используются в приборах промышленного контроля, например для выявления дефектов в металлах и сплавах и определения уровня жидкости в закрытых емкостях. Ценным методом научного исследования стал метод меченых атомов. Метод заключается в том, что к исследуемому элементу добавляют в незначительном количестве радиоактивный изотоп, по излучению которого судят о поведении элемента в тех или иных процессах и о его содержании в объемах или на поверхности раздела веществ. В медицине радиоактивные изотопы используют для диагностики и лечения. С помощью радиоактивных изотопов определяют возраст углеродосодержащих материалов, горных пород Земли и космических тел. [c.403]

    ИСПОЛЬЗОВАНИЕ РАДИОАКТИВНОСТИ В МЕДИЦИНЕ [c.461]

    Кроме стабильных изотопов вое элементы триады железа имеют искусственные радиоактивные изотопы. Хорошо известно практическое использование радиоактивного Со (тип ядра 4п, жесткий у-излуча-тель с энергией излучения 1,3 МэВ), получаемого из стабильного > Со облучением нейтронами. Период полураспада °Со Тц2 = 5 лет) удобен для использования этого изотопа 1в медицине для радиологического лечения злокачественных опухолей, а также ири анализе металлических изделий (у-дефектоскопия) с целью обнаружения в них трещин, раковин И других неоднородностей. Вместе с тем надо отметить, что °Со — один из самых опасных радионуклидов (жесткое излучение, большая продолжительность жизни). [c.114]

    Применение радиоактивных изотопов. Кроме широко известного использования урана и трансурановых элементов в ядерной энергетике и в производстве ядерного оружия, актиноиды и другие радиоактивные элементы находят многообразные применения в медицине, промышленности, быту и научных исследованиях. [c.393]


    Теперь ядерная химия превратилась в обширную и важную отрасль науки. Удалось получить лабораторными методами примерно 1000 радиоактивных нуклидов (изотопов), тогда как природных открыто только 272 устойчивых нуклида и 55 неустойчивых (радиоактивных). Использование радиоактивных изотопов в качестве меченых атомов стало ценным методом научных исследований, в частности в медицине. Управляемое высвобождение ядерной энергии дало новый важный источник энергии. [c.607]

    Ядерная медицина, базирующаяся на использовании радиоактивных изотопов в форме радиофармацевтических препаратов (РФП), источников излучения закрытого типа, а также на внешнем облучении, позволяет проводить многие исследования, диагностические и терапевтические процедуры лучше, проще и быстрее, чем любые другие традиционные методы. В некоторых случаях методам ядерной медицины вообще нет альтернативы. Эффективность этих методов основана на достижениях таких фундаментальных наук, как ядерная физика, химия, биология, а также результатах развития техники ускорителей и новых диагностических систем (сцинтиляционные камеры, однолучевые и позитрон-эмиссионные томографы, низкоэнергетические детекторы типа многопроволочных камер и т.д.). В настоящее время для научно-исследовательских, диагностических и терапевтических целей применяют около 200 различных радиоактивных изотопов, период полураспада которых составляет от нескольких минут до нескольких лет. Эти изотопы имеют преимущественно искусственное происхождение за счёт образования в реакциях взаимодействия заряженных частиц или нейтронов с веществом мишени. Радиоактивные изотопы получают в ядерных реакторах (реакторные изотопы), на ускорителях (циклотронные изотопы) и с помощью генераторов короткоживущих изотопов (генераторные изотопы). Некоторые изотопы, в основном изотопы долгоживущих и трансурановых элементов, могут быть получены при переработке отработавшего ядерного топлива. [c.548]

    С каждым годом растет применение изотопов в научных исследованиях, медицине и народном хозяйстве. Использование радиоактивных изотопов в ряде случаев ограничено вследствие вредного действия их излучений на объект исследования и необходимости иметь специальные-условия для работы с радиоизотопами. Поэтому во многих случаях в качестве меченых атомов все шире применяются стабильные изотопы. Кроме того, некоторые элементы (азот, кислород) вообще не имеют радиоактивных изотопов, пригодных для использования в качестве индикаторов. [c.232]

    Кроме использования в качестве меченых атомов, радиоактивные изотопы в настоящее время все шире применяются и как источник излучений в технике для просвечивания металлических изделий (гамма-дефектоскопия), в контрольно-измерительной аппаратуре, в химии — для возбуждения некоторых реакций без повышения температуры, в частности процессов полимеризации, для борьбы со статическим электричеством в промышленности (радиоактивные ионизаторы), в медицине — для лечения злокачественных опухолей, для стерилизации различных препаратов и пр. [c.543]

    Радиоактивные изотопы получают в специальных установках, а также в ядерных реакторах, после чего изотопы передают с соблюдением строгих мер предосторожности для использования в народном хозяйстве, в научно-исследовательских организациях и в медицине. [c.83]

    Одним из видов применения радиоактивных изотопов в медицине является использование их в качестве источников излучения для лечебного воздействия на организм. В одних случаях пользуются внешними источниками излучения, расположенными вне облучаемого объекта, в других—источник излучения в том или ином состоянии вводят непосредственно в облучаемую ткань. Среди источников последнего типа большое значение имеют коллоидные препараты радиоизотопов, вводимые различными путями внутрь организма. [c.35]

    В 70-е годы отмечается резкое возрастание интереса к использованию комплексонатов радиоактивных металлов, в частности технеция-99, для диагностических исследований в медицине. Начало 80-х годов отмечено появлением второго поколения хелантов для диагностики — бифункциональных комплексонов органических молекул, способных одновременно образовывать прочные соединения с катионами-метками и протеинами, а также развитием работ по использованию комплексонов для ингибирования солеотложения в нефтедобывающем и энергетическом оборудовании. [c.10]

    В последние годы интерес к аналитической химии кобальта сильно возрос. Это обусловлено разнообразными новыми применениями кобальта и его соединений. Общеизвестно использование кобальта в качестве легирующего компонента специальных сплавов с высокой твердостью и термостойкостью. Многие соединения кобальта обладают высокой каталитической активностью и служат катализаторами синтеза различных химических соединений. Радиоактивные изотопы кобальта широко применяются в медицине. Ряд сложных органических соединений кобальта влияет на обмен вешеств у растений и животных и т. п. Все ъто привело к необходимости разработать новые методы качественного обнаружения и количественного определения кобальта как основного компонента и примеси в технических и биологических материалах весьма разнообразного состава. Особое внимание в работах последних лет обращено на развитие методов определения следов кобальта. Для этого в настоящее время используются главным образом спектрофотометрические, кинетические и электрохимические методы анализа. Много исследований посвящено также синтезу новых органических реагентов для определения кобальта и изучению оптимальных условий их применения. [c.5]


    Обогащение стабильных изотопов для получения радионуклида 1. Одной из основных сфер приложения обогащённых стабильных изотопов является их использование в качестве стартового материала для получения радиоактивных изотопов различного назначения. Крупномасштабной наработке радиоизотопов для медицины препятствовали ограниченные возможности электромагнитного метода разделения и высокая цена получаемых изотопов. Центробежный метод разделения сделал изотопные материалы не только более доступными, но и предоставил новые возможности, в том числе и по получению радионуклида для ядерной медицины. [c.212]

    Вовлечение в оборот продуктов деления повышает экономическую эффективность работы АЭС, открывает возможность реализации новых технологий в науке, промышленности и медицине. Сегодня наметилась тенденция всё более полного использования осколочных радионуклидов, что в определённой степени смягчает проблему обращения с радиоактивными отходами. Анализ рынка радионуклидов показывает, что рост их производства в ближайшие годы во всём мире не только насущен или необходим, а это уже состоявшаяся реальность. [c.530]

    Повышение удельной активности радионуклида Ре. Монохроматическое мягкое рентгеновское излучение с энергией 5,9 кэВ (период полураспада — 2,7 года), характерное для радиоактивного изотопа Ре, делает его перспективным для использования в различных областях техники, науки и медицины. Однако из-за сильного самопоглощения излучения, обуславливаемого его малой энергией, требуется повышение удельной активности данного радионуклида в источниках излучения. Радиоактивный изотоп Ре применялся в приборах космической навигации и в составе оборудования для анализа элементного состав пород, залегающих в районе посадки автоматических станций Венера-13 , Венера-14 . Препараты, содержащие Ре, хорошо зарекомендовали себя при применении в компактных приборах для проведения рентгеноструктурного анализа в полевых геологических исследованиях и в биомедицинских исследованиях для лечения ряда болезней облучением 7-квантами низкой энергии. [c.533]

    Введение. Применение радионуклидов (PH) в науках о жизни имеет важнейшее значение на современном этапе. В настоящее время известно около 2300 радиоактивных изотопов, из которых более 200 применяют в различных областях науки, техники, медицины. Наиболее широкое использование PH находят в ядерной медицине и биохимии, а в последние годы — для оценки состояния окружающей среды в связи с становлением экологии как науки. Исследовательские и практические работы с применением PH ведутся, в частности, по таким направлениям как  [c.328]

    Началом истории генераторов радионуклидов принято считать время начала использования естественной пары радий — радон (1920 г.) для получения радиоактивного газа применяемого в медицине  [c.399]

    Введение. Одной из наиболее заметных тенденций развития современной медицины являются опережающие темпы внедрения новых диагностических методов, в особенности неинвазивных, основанных на использовании последних достижений науки и техники. Среди таких методов следует отметить диагностический тест дыхания, сущность которого состоит в применении различных препаратов, меченых радиоактивными или стабильными изотопами. Препарат, принимаемый пациентом, претерпевает в организме изменения, связанные с протеканием биохимических реакций в разных органах. Спустя некоторое время препарат частично или полностью разлагается и выводится из организма. Содержащийся в препаратах углерод в процессе реакций обмена окисляется и выводится из организма через лёгкие в виде углекислого газа в выдыхаемом воздухе. Если изотопный состав содержащегося в препарате углерода отличен от природного, то в углекислоте выдыхаемого [c.465]

    Наибольшей чувствительностью и селективностью из ионизационных детекторов обладает электронозахватный детектор (ЭЗД). Для определения электронного сродства органических соединений в 1957 г. Ловелок [52] предложил ЭЗД, основанный на захвате тепловых электронов в камере с радиоактивным источником. Было установлено, что сродство некоторых вешеств к электронам (табл. VHI.6) с тепловыми энергиями часто бывает связано с их биологической активностью. Последующие успехи в использовании ЭЗД для анализа органических, металлорганических и неорганических соединений, для анализа токсикантов и пестицидов показали пригодность этого детектора для точных количественных измерений. Именно поэтому ЭЗД находит все большее применение в химии, биологии, медицине, пищевой промышленности, сельском хозяйстве и экологических исследованиях [1 ]. [c.413]

    Получение и использование. Радий собственных минералов не имеет и выделяется при переработке урановых руд. Металлический радий получают электролизом галогенидов. Радий и его соли в настоящее время имеют весьма ограниченное применение. Его используют в качестве эталонного источника а- и у-излучений и радона. В медицине используется как у-источник при лечении злокачественных опухолей, кожных заболеваний и в некоторых других случаях, где требуется небольшая доза радиоактивного излучения. Интересно отметить, что малые концентрации радия усиливают ферментативное образование сахарозы в листьях. [c.308]

    Большое значение имеют комплексоны в биологии и медицине. Эти соединения достаточно эффективны при выведении из живых организмов токсичных металлов, в том числе радиоактивных изотопов и продуктов их распада. Они применяются также для удаления радиоактивных веществ с зараженных ими поверхностей. Использование комплексонов и комплексонатов в некоторых отраслях сельского хозяйства дает возможность регулировать содержание металлов в почвах и предотвращать хлороз растений. Кроме того, комплексоны широко применяются в текстильной, кожевенной, пищевой, бумажной промышленности, в производстве металлов, лаков, красок, каучуков, в очистке нефти, воска, жиров и т. д. [c.10]

    Выше отмечалось, что в настоящее время в окружающей среде в рассеянном виде присутствует большое количество радионуклидов искусственного происхождения, что является следствием их выпадений после ядерных испытаний, выбросов атомных транспортных и энергетических установок, использования радиоактивных материалов в науке, технике и медицине. Для контроля за содержанием радионуклидов в гфи-родньгх объектах в основном находят применение методьг радиохимии и у-спектрометргш, реже - а- и р-спектрометрии 1112,113]. Даггггьге табл [c.305]

    Изучение и использование радиоактивных свойств радия в большой мере способствовало исследованию строения атома и вещества. Радий служит источником альфа-частиц, которыми бомбардируют бериллиевую мишень для получения потоков нейтронов. Радий применяют для приготовления светящихся составов. Установлено, что в малых количествах радий оказывает влияние на развитие, плодоношение и урожайность многих растений, усиливает ферментативное образование сахарозы в листьях. Радий используют как источник гамма-излучения в рентгеноскопии при просвечивании металлических изделий, а также в медицине — при лечении рака, кожных болезней и др. Он служит источником для получения газа радона, который Не только широко применяется в медицине (например, для радоновых ванн), но используется также и при исследованин поверхности металлических предметов, и при поисках в природе радиоактивных элементов. [c.204]

    Прпменение. Изучение и использование радиоактивных свойств Р. сыграло большую роль в исследовании строения атомов и атомных структур. В качестве источника а-частиц Р. находит применение для приготовления радий-бериллиевых источников нейтронов (нейтроны получаются при бомбардировке бериллия а-частицами). Р. применяется для изготовления светящихся красок, в качестве источника при просвечивании металлич. изделий, а также в медицине — при лечении рака, кожных и др. болезней. Установлено влияние малых количеств Р на развитие, плодоношенпе и урожайность многих растений (хлопчатника, подсолнечника, свеклы, моркови, огурцов и т. д.). Под влиянием малых концентраций Р. усиливается ферментативное образование сахарозы в листьях. Известны попытки использовать соли Р. как составную часть почвенных минеральных удобрений, Значительно нрименяют Р. как источник получения радона. [c.219]

    Почти все применения ядерной науки имеют положительные и отрицательные стороны. Они помогли удовлетворить большую часть энергетических потребнос-тей, внесли важный вклад в промышленность, биологические исследовх1ния, и особенно в медицину, но в то же время радиация — одна из причин возникновения раковых опухолей (хотя и может использоваться для их же лечения). Производство и использование атомной энерти сопряжены с вероятностью аварии. С любыми радиоактивными материалами следует обращаться с предельной осторожностью. Только приборы могут определить наличие радиоактивности. Более того, все применения атомной технологии создают одну и ту же, до сих пор не решенную, проблему что делать с отходами ядерной технологии  [c.299]

    Стабильные нуклиды для И. и. получают методами изог топов разделения. Важное преимущество их использования-отсутствие ионизирующих излучений недостатки высокая (в большинстве случаев) стоимость препаратов, сложная техника регистрации, низкая точность определения и сравнительно высокие пределы обнаружения (не ниже 10 -10 % по массе). В случае радиоактивных И. и. пределы обнаружения тем ниже, чем меньше радионук-лида-метки. и могут достигать чрезвычайно низких значений (10" -10" % по массе). Это определяет широкое применение радиоактивных И. и. в химии, физике, биологии, медицине и др. областях. Большинство используемых радионуклидов - искусственные, получаемые при ядерных р-циях как продукты деления, при проведении активац. анализа, радиоактивном распаде долгоживущего материнского нуклида (см. Изотопные генераторы). Для тяжелых элемен-тов-Ра, ТЬ, В1, РЬ, Т1-обычно используют их короткоживущие радионуклиды, входящие в состав прир. радиоактив- [c.196]

    Искусственные радиоактивные изотопы образуются в результате деятельности человека использование ядерной энергии в военных и мирных целях, применение радиоактивных веществ в экономике страны (промышленносгь, транспорт, сельское хозяйство, медицина, научные исследования и др.). Радионуклиды — продукты деления ядерного оружия и выбросы радиационно опасных объектов накапливаются в окружающей среде, в том числе и гидросфере. [c.307]

    Трудно сказать, что имеет большее значение для успешного развития современной медицины и биологии—неорганические радиоактивные препараты или органические соединения, меченные радиоактивными изотопами. Органические препараты мало применяются в качестве лечебных средств, но зато открывают широкие возможности дпя диагностики при решении вопросов, вязанных с механизмом действия лекарственных вещ,еств, изучением функциональной деятельности различных органов. Например, использование дийодфлуоресцеина для диагностики опухоли мозга бенгальской розы—для изучения заболеваний печени и т. п. [c.135]

    Самое широкое использование в качестве меченых атомов изотопы нашли в биологии и в медицине. Человеческий организм содержит такие большие количества элементов — углерода, водорода, азота, кислорода, серы и т. д., что очень трудно проводить анализ на содержание в нем небольшого количества того или иного органического вещества. Одпако органршеское соединение, в состав которого введен радиоактивный изотоп, можпо проследить в организме измерением радиоактивности. Для этой цели особенно пригоден радиоактивный изотоп С . Этот изотоп имеет период полураспада около. 5568 лет. Оп подвергается медленпому распаду с испусканием Р-лучей, и количество данного изотопа в образце можно определить измерением Р-активпостп. Большие количества этого изотопа легко можно приготовить в урановом реакторе при действии па азот медленных нейтронов  [c.548]

    Фатеева М.Н. Опыт клинико-диагностического применения некоторых радиоактивных изотопов в СССР. Материалы Международной конференции по мирному использованию атомной энегии., Женева, 8-20 августа 1955 г. Т. 10. С. 268-273. Радиоактивные изотопы и излучения в медицине. Объединённые Нации. — М. Гос. изд-во медицинской литературы, 1958. [c.613]

    В связи с указанным, многие радиоактивные изотопы нашли широкое применение в качестве радиоактивных индикаторов, или меченых атомов. С использованием последних изучаются вопросы биологии (в частности, обмен веществ в живых организмах). Метод нашел разностороннее использование в сельском хозяйстве. Например, изотопные индикаторы позволяют наблюдать за ростом корней растений непосредственно в почве, успешно изучаются усвояемость удобрений растениями, кормов — животными и т. д. (о меченом атоме С-14 см. гл. 23, 5). Изотопные индикаторы играют важную роль в исследованиях трения, износа деталей машин, системы рациональной смазки действующих механизмов. Они позволяют дистанционно (на расстоянии) контролировать влажность зерна в потоке, плотность и толщину проката и вообще листового материала самого разнообразного характера. Для этих целей широко используется изотоп Ат (америций, моноэнер-гетический у-излучатель). В космонавтике эффективны автономные генераторы тепловой энергии, построенные на основе изотопов Ри-238, Ст-232 и Ст-244. Эти изотопы находят также применение в медицине. Радиация используется в поисках полезных ископаемых (у-каротаж). В последнее время для аналогичных целей начинают широко применять нейтроны. В качестве источника таковых для обнаружения и оценки газовых и нефтяных месторождений заслужил внимание изотоп калифорния СГ. Область практического применения радиоактивных индикаторов непрерывно расширяется. [c.23]

    Начиная с работ Кюри, химики всегда играли главную роль в фундаментальных исследованиях радиоактивности и свойств ядер, а также в разработке методов применения радиоактивных веществ в других областях. Так, Нобелевская премия 1944 г. за открытие деления ядер была присуждена химику Отто Гану. В 1951 г. Нобелевская премия за открытие двух первых в Периодической системе трансурановых элементов была присуждена химику Гленну Сиборгу и его коллеге — физику Эдварду Мак-Миллану. Большая часть достижений в нашем понимании природы атомного ядра — это плод совместной работы химиков и физиков, где искусство и подходы дополняют друг друга. Более того, использование явления радиоактивности и основанных на ней методов в таких различных областях J aк биология, астрономия, геология, археология и медицина, а также в различных областях химии до сих пор было и продолжает оставаться ареной пионерских работ специалистов, получивших подготовку по ядерной химии. Поэтому ядерная химия имеет междисциплинарный характер. [c.200]

    Получение и использование. В природе иттрий встречается в сложной 0М6СИ с рядом элементов, близких с ним по химическим свойствам. Поэтому выделение его связано с большими трудностями и этим объясняется дороговизна металла и его ограниченное применение. Выделяют соли иттрия из раствора смеси лантаноидов ионообменным способом и потом металл из солей восстанавливают кальцием или литием. Сочетание ценных качеств иттрия обеспечивает перспективное использование этого элемента в целом ряде новейших производств. Сплавы иттрия применяются в ядерной энергетике, самолетостроении, радиоэлектронике. Небольшие добавки иттрия улучшают действие легирующих металлов. В медицине находит применение радиоактивный изотоп У для лечения радиационным разрушением некоторых видов опухолей. [c.324]


Смотреть страницы где упоминается термин Использование радиоактивности в медицине: [c.207]    [c.337]    [c.103]    [c.251]    [c.549]    [c.614]    [c.614]    [c.167]   
Смотреть главы в:

Молекулярные основы жизни -> Использование радиоактивности в медицине




ПОИСК





Смотрите так же термины и статьи:

Радиоактивность использование



© 2024 chem21.info Реклама на сайте