Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Применение атомной энергетике

    Особо чистые вещества находят применение в производстве полупроводниковых приборов, в измерительной и вычислительной технике, атомно энергетике, волоконной оптике и других областях. [c.11]

    Важнейшей областью применения лития является атомная энергетика. Его используют как источник получения трития  [c.486]


    Кварцевое стекло обладает высокой термостойкостью, огнеупорностью, химической и радиационной стойкостью, оптической прозрачностью в широком диапазоне длин волн, высокими электроизоляционными свойствами. Путем введения в кварцевое стекло малых добавок различных оксидов ему можно придать некоторые специальные свойства, например избирательное светопропускание, повышенную жаростойкость, пониженный коэффициент теплового расширения и др. Это значительно расширяет области его применения в атомной энергетике, химическом машиностроении, радиоэлектронике, космической технике, светотехнике, прецизионном приборостроении и др. [c.37]

    Одним из кардинальных решений проблемы защиты окружающей среды является использование водорода в качестве топлива, а также применение электрохимических топливных элементов. Быстрыми темпами совершенствуется атомная энергетика. [c.219]

    Появление атомных реакторов открыло новую область применения жидких металлов и расплавленных солей как теплоносителей для атомных электростанций [6, 7, 81. Особенное внимание было уделено жидким натрию, калию, МаК (натрий-калиевому сплаву), литию, свинцу, висмуту, ртути [91, хлоридам и фтористым соединениям щелочных и щелочноземельных металлов [101, а также их гидроокисям. Смесь нитрит натрия — нитрат натрия — нитрат калия не привлекла большого внимания применительно к атомной энергетике, частично потому, что имели место несколько взрывов при использовании этого вещества в ваннах для термообработки при температурах свыше 500° С. [c.267]

    Создание сверхмощных магнитных полей, необходимых при исследовании плазмы, получение дейтерия методом низкотемпературной дистилляции жидкого водорода для атомной энергетики, обеспечение работы молекулярных усилителей (мазеров) и генераторов электрод1аг-нитных волн, использование в счетно-вычислительной технике (сверхпроводящие элементы) [1, 5] — вот далеко не полный перечень областей применения жидкого водорода. [c.6]

    Водород используют для охлаждения мощных генераторов электрического тока, а сто изотопы находят применение в атомной энергетике (ем. стр. 114 н 212). [c.347]

    Такие низкокипящие сжиженные газы, как жидкие кислород, азот и метан, давно нашли широкое применение в химии, машиностроении, металлургии, приборостроении, ракетной технике, атомной энергетике и ряде других отраслей промышленности. В последние годы наблюдается значительное расширение масштабов производства и применения также жидкого водорода. [c.5]


    Титан благодаря высокой термической и коррозионной устойчивости — важный конструкционный материал. Он используется для строительства самолетов, подводных лодок и пр. Цирконий (освобожденный от гафния) и его некоторые сплавы применяются в атомной энергетике в качестве конструкционных материалов, отражающих нейтроны. Масштабы применения гафния более ограничены он также используется в атомной энергетике, но как поглотитель нейтронов применяется в электронной технике (катоды телевизионных трубок). [c.500]

    Применение в энергетике. Бор (изотоп 5°В) интенсивно поглощает медленные нейтроны, поэтому используется для изготовления регулирующих стержней атомных реакторов и защитных устройств от нейтронного облучения. Кристаллический бор обладает полупроводниковыми свойствами и используется в полупроводниковой технике (его проводимость при нагревании до 600 С возрастает в 10 раз). Исключительной химической стойкостью, твердостью, жаростойкостью обладают многие соединения бора с металлами побочных подгрупп. Алюминий и его сплавы применяют в энергетике в качестве конструкционного и электротехнического материала. Галлий применяют в полупроводниковой технике, так как его соединения с мышьяком, сурьмой, висмутом, а также аналогичные соединения индия обладают полупроводниковыми свойствами. Галлий используют при изготовлении высокотемпературных термометров с кварцевыми капиллярами (измерение температуры до 1500° С). Галлий может быть использован как хороший теплоноситель в системах охлаждения ядерных реакторов, лазерных устройств. Индий обладает повышенной отражательной способностью и используется для изготовления рефлекторов и прожекторов. Способность таллия при температуре ниже 73 К становиться сверхпроводником делает его перспективным материалом в энергетике. Представляют практический интерес многие соединения этих металлов и соединения бора, например нитрид бора ВЫ—боразон, отличающийся исключительной твердостью и химической инертностью. [c.230]

    Гелий получают из некоторых природных газов, в которых он содержится как продукт распада радиоактивных элементов. Он находит применение для создания инертной среды при автогенной сварке металлов, а также в атомной энергетике, где используется его химическая инертность и низкая способность к захвату нейтронов. Гелий широко применяется в физических лабораториях в качестве хладоносителя и при работах по физике низких температур. Он служит также термометрическим веществом в термометрах, работающих в интервале температур от 1 до 80 К. Изотоп гелия jHe — единственное вещество, пригодное для измерения температур ниже 1 К. [c.493]

    Применяют водород для получения высоких температур кислородно-водородным пламенем режут и сваривают металлы. Он используется для получения металлов (молибдена, вольфрама и др.) из их оксидов, в химической промышленности — для получения аммиака из азота воздуха н искусственного жидкого топлива из угля в пищевой промышленности—для гидрогенизации жиров (см. 17.14). Изотопы водорода — дейтерий и тритий — нашли важное применение в атомной энергетике (термоядерное горючее). [c.164]

    Трудно перечислить применение и переоценить значение полупроводниковых материалов в науке и новейшей технике. Благодари созданию новых полупроводниковых приборов в последние десятилетия получила бурное развитие радиотехника. Полупроводниковые фотосопротивления и фотоэлементы используются в различных автоматических устройствах, а ферритовые полупроводники и сегнетоэлектрики — в электронно-счетных машинах, радиолокации, многоканальной телефонии, электроакустике. Развивающиеся атомная энергетика и космическая техника также используют полупроводниковые материалы. Многие полупроводниковые приборы поступают на вооружение сельского хозяйства. Многочисленны и другие области применения полупроводников. [c.141]

    Важнейшей областью применения лития как источника трития (см. гл. 10) является атомная энергетика. [c.258]

    Применение в энергетике. Литий применяется в химических источниках тока натрий и сплав его с калием являются экономичным теплоносителем в атомных реакторах, так как они не замедляют цепную реакцию деления ядер урана, обладают высокой теплоемкостью и теплопроводностью. Цезий и рубидий легко теряют электроны под действием света (фотоэффект), поэтому широко применяются для изготовления фотокатодов, используемых в разнообразных измерительных схемах, устройствах фототелеграфии, звуковоспроизведения оптических фонограмм, в передающих телевизионных трубках и др. [c.227]

    Применение в энергетике. Углерод в форме алмаза широко используется в технике для резки стекол и полупроводников, в качестве основы шлифовальных порошков. Углерод в форме графита идет в больших количествах на изготовление электродов его применяют как замедлитель нейтронов в атомной энергетике и т. п. [c.231]


    Развитие разнообразных областей химии, физики, радиоэлектроники, атомной энергетики, лазерной техники н других отраслей новой техники, в которых используются вещества высокой чистоты, неразрывно связано с применением высокочувствительных методов анализа металлов, неметаллов и их соединений, сплавов, интерметаллических соединений, люминофоров, мономерных и полимерных органических соединений и т. д. [c.20]

    Атомная энергетика получает все более широкое применение, так как обеспечивает экономию органического топлива и соответственно снижает загрязнение окружающей среды, вызванное сжиганием природного органического топлива. Вместе с тем в процессе работы ядерных реакторов накапливается значительное [c.404]

    Способность к ионному обмену многих неорганических веществ, главным образом алюмосиликатов, известна давно. Уже в конце прошлого столетия некоторые природные и синтетические алюмосиликаты нашли применение для умягчения воды, очистки сахарного сиропа от калия. Однако известные в то время неорганические иониты (глинистые минералы, синтетические алюмосиликаты — пермутиты) обладали низкой химической устойчивостью и небольшой обменной емкостью, ограничивших их применение. Появление синтетических ионообменных смол привело к длительному забвению неорганических ионитов. Однако развитие в послевоенные годы радиохимии и атомной энергетики потребовало создания радиационно и термически стойких ионообменных материалов, обладающих к тому же высокой селективностью. Этим требованиям не удовлетворяли имевшиеся в то время органические ионообменные смолы, и внимание исследователей разных стран вновь привлекли неорганические соединения. [c.670]

    Жидкий водород используется как эффективное ракетное топливо. Изотопы водорода (тритий и дейтерий) находят применение в атомной энергетике для осуществления ядерных реакций. [c.413]

    Широкое применение в атомной энергетике нашли изотопы водорода — дейтерий и тритий, которые являются ядерным горючим. [c.110]

    Основная область применения лантанидов — металлургия, где они используются как добавки к различным сплавам. Оксиды этих элементов применяются в качестве катализаторов, входят в состав многих лазерных и ферромагнитных материалов, широко используются в оптической промышленности, в производстве специальных сортов стекол. В последние годы они нашли применение в качестве важных компонентов керамических сверхпроводящих материалов, твердотельных лазеров непрерывного излучения, входят в состав некоторых катализаторов крекинга нефти, используются в атомной энергетике. [c.439]

    В книге изложены научные основы материаловедения и производства графитных и угольных конструкционных материалов, применяемых в металлургии, машиностроении, электротехнике и в других отраслях промышленности. Важнейшие новые области их применения — атомно-ядерная энергетика и ракетная техника. [c.2]

    Тяжелая вода находит применение в атомной энергетике в качестве замедлителя нейтронов, а также используется для получения химических соединений с тяжелым изотопом водорода. [c.135]

    Редкоземельные металлы находят широкое применение. В металлургии они применяются как легирующие добавки для улучшения механических свойств сплавов. Лантаноиды и их соединения используют в качестве катализаторов в органических и неорганических синтезах, а также в качестве материалов в радио- и электротехнике, в атомной энергетике. [c.703]

    Ведутся исследования по применению микробиологических методов для очистки жидкого и твердого топлива от соединений серы. Одним из кардинальных решений проблемы защиты окружающей среды является использование водорода в качестве топлива, а также применение электрохимических топливных элементов. Быстрыми темпами развивается атомная энергетика, [c.720]

    Темпы и экономические характеристики атомной энергетики в значительной мере будут определяться скоростью накопления вторичного делящегося ядерного горючего — плутония, что возможно за счет снижения времени удвоения быстрых реакторов. Наиболее эффективно этого можно достигнуть за счет повышения удельной концентрации ядерного горючего (например, применения низколегированного металлического урана) п повышения удельной теплонапряженности активной зоны быстрых реакторов. [c.3]

    Среди многочисленных методов противокоррозионной защиты часто используются металлические покрытия и, в част-ности, покрытия свинцом. Свинцеванию подвергаются изделия из черных и цветных металлов с целью защиты оборудования от воздействия агрессивной среды (подземиые воды, содержащие органические кислоты или большое количество углекислого газа), а также в связи с широким применением атомной энергетики в народном хозяйстве для защиты от радиоактивного излучения. Дополнительная защита свинцового покрытия позволяет во многих случаях ограничиваться меньшей его толщиной и сократить тем самым расходы этого дефицитного цветного металла, а также исключить токсичность свинца. Такой защитой может служить фосфатирование—процесс покрытия металлической поверхности пленкой трудио-растворимых фосфатов. [c.77]

    Идея работы по оптимизации теплообменников возникла еще при личных встречах Д. Д. Калафати с основоположником понятия энергетического коэффициента академиком М. В. Кирпичевым в 1950 г., а в связи с применением различных теплоносителей и широким использованием поверхностных теплообменников в атомной энергетике, систематически разрабатывалась авторами с 1975 г. в серии совместных статей, опубликованных в журналах Теплоэнергетика , Известия вузов по разделу Энергетика , а также в сборниках Труды МЭИ . Обобщение этих работ и дальнейшее их развитие послужило основой предлагаемой книги. [c.5]

    Наиболее важное применение порошковые иониты могут найти в новом методе водоподготовки для ТЭЦ, названном паудекс-методом [184]. Этот метод дает возможность применить фильтры намывного типа и обладает рядом неоспоримых достоинств перед ионитовыми колоннами. Намывные фильтры применяются в атомной энергетике [185]. Все порошковые иониты из асфальтеновых концентратов имеют более высокие динамические и кинетические характеристики, чем у промышленных ионитов, они отличаются также большой скоростью ионообмена (табл. 120) [186]. [c.352]

    Битум уже был успешно использован для хранение твердых отходов с низким уровнем радиоактивности, а также для фиксирования и хранения радиоактивных осадков. Наиболее широкое применение он найдет в атомной энергетике, вероятно, в качестве обкла-дочного материала аварийных и постоянных земляных ям, предназначенных для хранения растворов с низким уровнем радиоактивности. [c.175]

    Поэтому большое значение имеет комплексное управление всем циклом работ на основе программно-целевого планированиия и финансирования. Целевая программа — это плановый документ, включающий законченный комплекс научно-исследовательских, проектно-конструкторских, технических, экономических и социальных мероприятий, решение которых обеспечивает достижение конечных целей. Планирование и управление на основе программноцелевого подхода нашли достаточно широкое применение при организации межотраслевых комплексных разработок (разработка проблем космоса, атомной энергетики и т. п.). Согласно решениям XXVI съезда партии, они должны разрабатываться для решения всех важнейших научно-технических проблем, быть составной частью перспективного плана. [c.76]

    УУКМ может быть получен либо осаждением пироуглерода на углеродный волокнистый наполнитель, либо поочередно многократной пропиткой углепластика полимерным связую1цим и высокотемпературной обработкой. К искусственно созданным углеродным материалам относятся такие традиционные материалы как технический углерод (сажа), углеродные сорбенты и синтетические алмазы. Все эти материалы отличаются и технологией изготовления, и областями применения. Среди огромного количества углеродных материалов объем производства углеграфитовых материалов наибольший, так как область применения их весьма широка в металлургической, химической, в электротехнике, атомной энергетике, ракетной технике, в машино-, авиа-, приборостроении, их также используют как конструкционные и строительные материалы. [c.6]

    Существенный вйлад российской науки в исследования физико-химических свойств углерода, высокий уровень отечественных разработок неоднократно отмечался как в России, так и на международном уровне, в частности, на проходившем в мае 2001 года в Москве И Международном симпозиуме по соединениям внедрения. С другой стороны, в цепочке исследователи -разработчики - производители - потребители углеродных материалов все большее значение приобретает последнее звено - потребители углеродной продукции, так как сферы ее применения резко расширяются с развитием и углублением исследований в этой области. Предприятия цветной металлургии, химического, нефтеперерабатывающего и топливно-энергетического комплексов, атомной энергетики, широко использующие материалы на основе углерода и заинтересованные в разработке и внедрении новых материалов, могут стать источником дополнительного внебюджетного финансирования ряда [c.4]

    Сочетание атомов углерода разных гибридных состояний в единой полимерной структуре порождает множество аморфных форм углерода. Типичным примером аморфного углерода является так называемый стеклоуглерод. В нем беспорядочно связаны между собой структурные фрагменты алмаза, графита и карбина. Его получают термическим разложением некоторых углеродистых веществ. Стеклоуглерод — новый конструкционный материал с уникальными свойствами, не присущими обычным модификациям углерода. Стеклоуглерод тугоплавок (остается в твердом состоянии вплоть до 3700°С), по сравнению с большинством других тугоплавких материалов имеет небольшую плотность (до 1,5 г см ), обладает высокой механической прочностью, электропроводен. Стеклоуглерод весьма устойчив во многих агрессивных средах (расплавленных щелочах и солях, кислотах, окислителях и др.). Изделия из стеклоуглерода самой различной формы (трубки, цилиндры, стаканы и пр.) получают при непосредственном термическом разложении исходных углеродистых веществ, в соответствующих формах или прессованием стеклоуглерода. Уникальные свойства стеклоуглерода позволяют использовать его в атомной энергетике, электрохимических производствах, для изготовления аппаратуры для особо агрессивных сред. Стекловидное углеродистое волокно, обладая низким удельным весом, высокой прочностью на разрыв и повышенной термостойкостью, может найти применение в космонавтике, авиации и других областях. [c.450]

    Важнейшие области применения натрия — это атомная энергетика, металлургия, промышленность органического синтеза. В атомной энергетике натрий и его сплав с калием применяются в качестве жидкометаллических теплоносителей. Сплав натрия с калием, содержаш,ий 77,2% (масс.) калия, находится в жидком состоянии в широком интервале температур (темп, плавл. -12,8°С), имеет высокий коэффициент теплопередачи и не взаимодействует с большинством конструкционных материалов ни при обычных, ни при повышенных температурах. В металлургии натрийтермическим методом- получают ряд тугоплавких металлов, а восстанавливая натрием КОН выделяют калий. Кроме того, натрий используется как добавка, упрочняющая свинцовые сплавы. В промышленности органического синтеза натрий используется при получении многих веществ. Он служит также катализатором при получении некоторых органических полимеров. [c.385]

    Применение в энергетике. Гелий применяется в ядерной энергетике как источник а-частиц (ядра гелия). Ксенон 54X6 обладает свойством поглощать тепловые нейтроны, поэтому также применяется в атомной энергетике. Благородные газы, преимущественно неон, используются для изготовления светотехнических приборов (маяков, рекламы и т. п.). Смесью аргона с азотом наполняют лампы накаливания. Жидкий гелий применяется для получения очень низкой температуры (—272,2 К), при которой у многих металлических веществ обнаруживается сверхпроводимость. [c.235]

    Применение углерода и его соединений. Алмаз (большей частью искусственный) иаходит широкое применение при изготовлении режущего и бурового инструмента, а также как абразивный материал. Природный ювелирный алмаз обрабатывают и получают бриллианты. Графит служит основой конструкционных, огнеупорных, электродных, электротехнических и анти-фрикционнЕлх материалов. Кроме того, графит применяется как замедлитель нейтронов в ядерных реакторах. Технический углерод (сажа) используется как иаполни гель резин и пластмасс. Из сажи вырабатываются краски — типографские, малярные, тушь, красители для кожи и лент пишущих машин. Стеклографит (стеклообразный углерод), получаемый пиролизом некоторых углеродсодержащих соединений, исключительно тугоплавок, механически прочен и химически инертен. Он применяется как конструкционный материал в химическом машиностроении, электротехнике, атомной энергетике, космической технике. [c.197]

    Несмотря на широкое развитие промышленности синтетических веществ, металлы по-прежнему остаются основным конструкционным материалом, незаменимым в ряде важнейших отраслей промышленности и сельского хозяйства. Более того, объем производства металлов неуклонно растет и соответственно неуклонно увеличивается мировой металлический фонд. В СССР производство стали за последние полвека выросло более чем в 30 раз. Металлофонд страны превысил 1 млрд. т (главным образом за счет черных металлов). С увеличением массы применяемого металла растут и потери его от коррозии, причем, как показывают статистические данные, потери растут намного быстрее, чем объем металлофонда.,В первую очередь это объясняется изменением самой структуры метйллофонда. Раньше основное количество металла направлялось в транспорт (рельсы, мосты, подвижной состав и т. д.). С годами все возрастающая доля металлофонда приходится на т кие отрасли промышленности, как химическая, нефтехимическая, целлюлозно-бумажная, нефте-и газодобывающая, цветная и черная металлургия, атомная энергетика и другие, в которых условия эксплуатации металлов несравненно жестче, чем на транспорте. Здесь металл работает при повышенных температурах и давлениях, в потоках жидкости, в контакте с агрессивными средами. Кроме того, и в почвах, и в атмосфере коррозия металлов также становится все более интенсивной вследствие загрязнения воздуха и вод промышленными отходами, стимулирующими разрушение Для нашедших сейчас широкое применение [c.6]

    В 1964 г. кишиневский завод Электроточприбор приступает к серийному выпуску альфа-фазометров конструкции НИИхиммаша. Прибор получает применение в атомной энергетике, на машиностроительных, металлургических, судостроительных и других заводах страны, а с 1966 г. его использование рекомендует ГОСТ 11878—66 Сталь аустенитная. Методы определения содержания а-фазы . В 1971 г. тот же завод осваивает выпуск новой мо-эазработанного НИИхиммашем прибора — ферритометра [c.142]


Смотреть страницы где упоминается термин Применение атомной энергетике: [c.396]    [c.531]    [c.670]    [c.111]    [c.260]    [c.358]    [c.16]   
Водород свойства, получение, хранение, транспортирование, применение (1989) -- [ c.559 , c.560 ]




ПОИСК





Смотрите так же термины и статьи:

Атомная энергетика



© 2025 chem21.info Реклама на сайте