Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие источники ультрафиолетового излучения

    Ультрафиолетовые лучи и ионизирующее излучение. УФ-свет, рентгеновские лучи и другие виды ионизирующего излучения оказывают на микроорганизмы как подавляющее жизнедеятельность (летальное), так и мутагенное воздействие. Их специфическое действие еще мало изучено. Исходя из совпадения кривой поглощения нуклеиновых кислот и кривой подавления жизнедеятельности клеток при облучении в зависимости от длины волны, а также частоты мутаций в популяции, можно сделать вывод о том, что УФ-лучи действуют в основном на нуклеиновые кислоты. Наиболее эффективны лучи ближней УФ-области с длиной волны около 260 нм (рис. 15.5). Побочные повреждения при этом незначительны. Поражаются главным образом пиримидиновые основания. Например, два соседних тиминовых основания в ДНК могут оказаться ковалентно связанными. Наличие таких димеров тимина служит затем источником ошибок при репликации (рис. 15.6). [c.445]


    Земля купается в свете Солнца, и этот свет приносит не только тепло, но и энергию, необходимую всем живым организмам. Из З-Ю" кДж-м 2 световой энергии, ежедневно падающей на Землю. [1, 2], 30 кДж улавливается в процессах фотосинтеза [3]. В верхних слоях стратосферы свет высокоэнергетической части спектра взаимодействует с кислородом, в результате чего образуется защитная оболочка озона. Свет, проникающий сквозь атмосферу, позволяет нам видеть все, что нас окружает, придает предметам разный цвет. Свет управляет цветением растений и прорастанием семян и спор. В биохимических лабораториях свет и другие виды электромагнитного излучения, охватывающие широкий диапазон энергий, используются в экспериментальных целях. Рентгеновские, ультрафиолетовые и инфракрасные лучи, а также ультракороткие волны помогают исследовать молекулы, из которых мы состоим. Свет буквальна пронизывает все стороны жизни человека, при этом исключительно важным является его взаимодействие с биомолекулами. Данная глава написана как краткое введение в предмет в ней, в частности, приведен список источников для дальнейшего чтения. [c.5]

    Загрязнение окружающей среды может происходить естественным и искусственным путем. Естественными источниками загрязнений являются стихийные бедствия — извержения вулканов, пожары, землетрясения, ураганы, смерчи, а также космические лучи, ультрафиолетовое излучение, выход из глубин Земли радона и других вредных газов, природная радиоактивность не только минералов, содержащих актиноиды, но и многих обычных минералов, например, гранита или калийных минералов. При извержениях вулканов в атмосферу попадают миллионы тонн пепла, сернистого газа, сероводорода, почва покрывается лавой и пеплом, выпадают кислотные дожди, подводные извержения вызывают сильное загрязнение морской воды. При грозах в воздухе образуются озон Од и оксиды азота, при пожарах в воздухе повышается содержание оксида углерода СО и сажи. [c.57]

    Кварцевое стекло получило весьма разнообразное применение в технике. Более дешевое непрозрачное стекло в больших масштабах применяется для изготовления кислотоупорной и теплостойкой химической аппаратуры и посуды, тиглей, муфелей и реторт для плавки и возгонки легкоплавких металлов, корпусов вакуумных индукционных печей, высоковольтных изоляторов для ряда электротехнических установок и многих других изделий. Прозрачное кварцевое стекло используется для изготовления лабораторных приборов и посуды, изоляторов для радиопромышленности, деталей оптических приборов, баллонов для источников ультрафиолетового излучения и т. д. [c.186]


    Другие источники ультрафиолетового излучения.  [c.4]

    По мере роста температуры растет степень ионизации, а максимум энергии в спектре смещается, вообще говоря, в коротковолновую часть спектра. Поэтому свечение искры, хотя визуально менее яркое, чем свечение дуги, имеет большую яркость в ультрафиолетовой части спектра. Искры особенно опасны для поражений кожи, а в особенности глаз ультрафиолетовым излучением. Даваемые ими ожоги очень неприятны, и при работе с искрами, так же как со всеми другими источниками ультрафиолетового излучения, нужно [c.269]

    При фиксированной частоте v испущенные электроны имеют различные кинетические энергии. Откладывая число электронов, испущенных за данный промежуток времени, в зависимости от Т (или более непосредственно от I — hv—Тk) получим спектр испущенных электронов. При использовании гелия и других подобных источников электромагнитного излучения этот метод носит название ультрафиолетовой фотоэлектронной спектроскопии (УФС), в случае рентгеновских источников его называют рентгеновской фотоэлектронной спектроскопией (РФС) или ЭСХА электронная спектроскопия для химического анализа. [c.81]

    Различают два вида фотохимических реакций. В одних реакциях химическое взаимодействие происходит в количествах, пропорциональных количеству света, поглощенного реагирующими веществами. Это имеет место, например, в реакции фотохимического разложения галидов серебра при фотографическом процессе. В других реакциях поглощение света играет роль только возбудителя реакции, которая дальше совершается уже самопроизвольно, независимо от количества поглощенного света. Так происходит, например, возбуждение реакции между водородом и хлором в смеси этих газов при освещении ее прямыми лучами солнечного света или света от другого источника, богатого излучением в области фиолетовой или ультрафиолетовой части спектра. Такие реакции являются Фотокаталитическими. В фотохимических реакциях поглощение света приводит к зарождению цепи, как в рассмотренной выше реакции образования хлороводорода под действием паров металлического натрия. [c.165]

    Источником ультрафиолетового излучения может быть любая лампа типа ПРК или СВД, а также лампа УФ0-4А. Лампа помещается в кожухе 1 (рис. 14). Кожух вытачивается в виде отдельных стаканов, которые крепятся один в другом двумя шурупами, расположенными в дне стаканов. В верхней и нижней частях стенок кожуха имеются отверстия, причем на внешнем и внутреннем стаканах они смещены одно относительно другого для лучшей защиты глаз работающего от ультрафиолетового излучения. Кожух является одновременно и основанием прибора. Размеры кожуха малы, что в значительной степени усиливает его нагрев до весьма высокой температуры, поэтому снизу через входной штуцер 2 подается холодный воздух для лучшего охлаждения прибора. [c.34]

    Свет от источника ультрафиолетового излучения (или от какого-либо другого, в зависимости от требуемой длины волны возбуждающего света) проходит через светофильтр и, отражаясь от зеркала, попадает на кювету с исследуемым веществом, вызывая люминесценцию. Люминесцентное излучение через вторич- [c.47]

    Фотосинтез, уменьшил концентрацию оксида углерода (IV) в атмосфере и обогатил атмосферу кислородом (В. И. Вернадский). Другим источником кислорода были, по-видимому, фотохимические реакции разложения воды в верхних слоях атмосферы, вызванные ультрафиолетовым излучением Солнца. [c.187]

    В большинстве приборов для визуального наблюдения пользуются в качестве источника света лампами, дающими сильное ультрафиолетовое излучение, чаще всего ртутными лампами. Эмиссия ртутной лампы имеет линейчатый характер, причем наиболее яркие линии находятся в ультрафиолете. Так, лампа БУВ-15 (бактерицидная, из увиолевого стекла) дает очень интенсивную линию при 254 НМ, лампа ПРК-4 (ртутная, кварцевая) — интенсивную линию при 366 нм. Однако, например, в лампе ПРК почти так же интенсивны линии в видимой части спектра при 436, 546 и 577 нм и некоторые другие линии. Если линии видимого участка спектра будут попадать на испытуемый объект, то они также будут возбуждать спектр люминесценции многих веществ, однако рассеянный свет не позволяет хорошо наблюдать или измерять люминесценцию. Поэтому между лампой и наблюдаемым объектом устанавливают плотный светофильтр из специального черного [c.160]

    В принципе ионизационный детектор может работать и без источников излучения, например за счет электронов, ускоряемых электрическим полем [43] или ультрафиолетовым излучением [44, 45] преимуществом радиоактивных препаратов в первую очередь является то обстоятельство, что по сравнению с другими методами ионизации их интенсивность совершенно не зависит от внешних условий, именно поэтому практически все промышленные электронозахватные и гелиевые детекторы снабжаются радиоактивными источниками. [c.429]

    В качестве источников искусственного света используются угольная дуга, ксеноновые, ртутные п флуоресцентные лампы (спектральные характеристики в УФ-области приведены на рис. IV. 2). Из них наиболее приближены к спектру солнечного ультрафиолетового излучения — солнечного ультрафиолета (300—400 нм) ксеноновые лампы, поэтому они применяются чаще других. Несколько хуже в этом отношении свет угольной дуги, а спектр ртутных ламп вообще мало похож на солнечный, хотя у ртутных ламп высокого и сверхвысокого давления появляется [c.140]


    Наибольшей интенсивностью среди РЗЭ обладает фиолетовая флуоресценция иона СеЗ+ фотографирование сплошной полосы его излучения в области 315—407 ммк допускает открытие церия при разбавлении раствора до 10 % [67, 68] и определение при содержании 1—5 мкг]мл [110]. Желто-зеленое излучение раствора тербия состоит из ряда узких полос, наиболее яркие расположены около 490, 545, 590, 620 и 650 ммк чувствительность его фотографического открытия достигает 10 % [67, 68]., Описано количественное определение этого элемента при возбуждении водородной лампой на спектрофотометре с фотоумножителем, возможное в присутствии трехвалентных ионов других РЗЭ [220] (см. табл. 1У-23). Узкая полоса излучения гадолиния, расположенная около 310 ммк, дает возможность открывать его при концентрации до 10 %. Чувствительность открытия по красной флуоресценции европия (основные группы линий около 593, 616 и 695 ммк) намного ниже и соответствует около 0,01% [67, 68]. Значительно слабее по интенсивности широкие диффузные полосы излучения празеодима и неодима, а также узкие полосы (группы линий) самария и диспрозия [68]. Спектр флуоресценции празеодима состоит из ультрафиолетовой полосы 225—320 ммк с максимумами около 240 и 275 ммк, которая в 10 раз интенсивнее его голубого излучения в области 450—530 ммк с максимумом при 485 ммк [253]. Оранжево-красное свечение самария включает три группы линий, расположенных около 560, 595 и 640 ммк [99] спектр диспрозия содержит линии с длиной волны 472, 489, 571 и 665 ммк [64]. Использованию собственной флуоресценции ионов РЗЭ (кроме тербия) в практике массового химического анализа препятствует отсутствие стабильных и достаточно мощных источников коротковолнового ультрафиолетового излучения, необходимого для возбуждения иХ свечения. [c.191]

    Г. Гаффрон, рассматривая этапы фотохимической эволюции, подчеркнул, что главным источником энергии в добиологическую эру, кроме теплоты, было ультрафиолетовое излучение и частично разряды. Продуктами реакций в ранние периоды химической эволюции были, главным образом, простые молекулы, получившиеся в результате различных радикальных процессов, но в их числе уже могли быть глицин, аденин и другие важные компоненты биологических конструкций. Несколько позже появились пептиды и порфирины и начался деятельный катализ соединениями железа и, вероятно, другими соединениями металлов (медь, кобальт, цинк). Ультрафиолет уступает место видимому свету. Начинаются фотохимические реакции на больших молекулах. Все более важной делается роль матриц и результатов многократных репликаций. Образуются первые ферменты и те формы, которых мы не знаем, но существование которых должны предполагать первичные формы жизни, уже имеющие примитивный генный аппарат. [c.140]

    Исследование флуоресценции под действием ультрафиолетового излучения и уизлучения в различных растворах показало, что некоторые растворы одинаково эффективны для обоих видов излучения, в то время как другие системы проявляют различия в относительной флуоресценции. Так, для одного и того же вещества, являющегося источником флуоресценции в различных растворителях под действием ультрафиолетового излучения, интенсивность флуоресценции примерно одинакова. Под действием же у ИЗлучения она различна. В работах [19, 20] изучен ряд таких систем и рассмотрены возможные причины, обусловливающие эти различия. [c.81]

    Хроматографический анализ с цветными индикаторами для анализа бензинов и керосинов был впервые применен А. Л. Ле-Розеном [19]. Общий ход анализа в этом методе остается таким же, как и в ультрахроматографическом методе. В этом случае отпадает необходимость применения источника ультрафиолетового излучения, но требуется специальная подготовка адсорбционных колонок. Перед загрузкой адсорбента в колонку на ее внутренние стенки в виде узких продольных полос наносится выбранный цветной индикатор. Если одновременно требуется несколько индикаторов, то каждый из них наносится в виде полос, не соприкасающихся друг с другом. После этого в колонку засыпается адсорбент и вводится исследуемая смесь. Количественный состав сме- [c.40]

    В качестве источников ультрафиолетового излучения широко применяются ртутные лампы. Ртутная лампа представляет собой трубку, колбу или сосуд другой формы (рис. 25, 26, 27) из кварца или тугоплавкого увиоле-вого стекла, из которого удален воздух и в который введено небольшое количество ртути и инертного газа (чаще всего аргон, иногда ксенон, криптон). При наложении напряжения на электроды (напряжение зажигания) молекулы газа в межэлектродном пространстве ионизируются [c.139]

    В последние десять лет в продаже появились многие типы источников ультрафиолетового света, которые можно, вообще говоря, разделить на три класса лампы накаливания, дуговые лампы и флуоресцентные лампы. Лампы накаливания известны каждому к ним относятся электрические лампочки, используемые для освещения в быту. В лампах этого типа применяется вольфрамовая нить, заключенная в стеклянный баллон, наполненный газом. Лампы накаливания — это в лучшем случае просто недостаточно мощные источники ультрафиолетового излучения (общая энергия ультрафиолетового излучения, испускаемого фотософитом мощностью 1000 вт, составляет при длинах волн меньше 380 нм только 0,3% всей излучаемой энергии), однако при использовании соответствующих фильтров лампы накаливания можно применять в качестве слабых источников длинноволнового ультрафиолетового света. Лампа типа Пэрпл X испускает достаточно большое количество ультрафиолетового света и применяется для флуоресцентного анализа минералов. Использованию других ламп накаливания препятствует большое количество тепловой энергии и большая интенсивность видимого света, которые выделяются при их работе. [c.318]

    Такехара и сотр. [98] исследовали действие света нескольких источников ультрафиолетового излучения, в том числе и солнечного света, на восемь органических соединений ртути. Проведенные ими опыты показали, что через 40 час после освещения фе-нилмеркурацетата ртутной лампой не разложилось только 33— 38% вещества, а в другом опыте после 10-часового освещения фенилмеркурацетата солнечными лучами не разложилось только 48% вещества. В водных растворах фенилмеркурацетат полностью разлагался в течение 2 час при освещении ртутной лампой, в то время как на солнечном свету за 10 час разложилось только 25% вещества. Единственным идентифицированным продуктом разложения фенилмеркурацетата является закись ртути. Учитывая уравнение (9), интересно выяснить, образуется ли в ходе разложения фенилметилртуть. [c.350]

    В Национальной лаборатории возобновимых источников энергии в штате Колорадо научились синтезировать фуллерены, используя энергию солнца. В таких установках графит испаряют с помощью параболических зеркал, концентрирующих энергию на графитовых стержнях. Важно, что выход фуллеренов в солнечных нагревателях выше, чем при обычном методе испарения фафита в элекфической дуге. Это объясняют тем, что сильное ультрафиолетовое излучение дуги разрушает многие из возникших фуллеренов прежде, чем они успевают покинуть место своего рождения, а в солнечных установках этого не происходит. Солнечную энергию можно использовать и для конфолируемого предотвращения других углеродных кластеров, при фанспортировании углеродных паров в затемненную зону. [c.117]

    Интересные результаты получаются при хлорировании углеводородов, Хлорирование бензола под действием у-лучей протекает так же, как под действием ультрафиолетового света. Однако в толуоле под действием ультрафиолетового света хлорируется метильная группа, тогда как под действием у-излучения идет хлорирование в бензольном кольце. Преимущество улучей перед ультрафиолетовыми заключается не только в том, что с помощью первых можно проводить процессы, невозможные при других источниках активации, но и то, что улучи не требуют проведения процесса в стеклянной или в кварцевой аппаратуре. [c.264]

    В качестве источников света в современных приборах применяют лампы с полым катодом или же с СВЧ-возбуждением, излучаюхцие линейчатый спектр. Среди них наиболее распространены лампы с по и.ш катодом, которые представляют собой герметичный баллон из стекла с кварцевым окном, гфопускающим ультрафиолетовое излучение. В баллон впаяны два электрода катод в виде полого цилиндра, изготовлешгый из металла, для определения которого предназначена лампа, и анод произвольной формы. При подаче на лампу тока силой 5-30 мА при выходном напряжении 300-800 В пары металла, из которого изготовлен катод, поступают в плазму разряда и испускают свет Поскольку интерв ал длин волн испускаемого света узкий (порядка 0,001 нм), а линии поглощения определяемых элементов заметно шире, аналитический сигнал можно измерять практически селективно. При этом другие элементы не мешают проведению анализа. [c.247]

    Не подлежит сомнению, что основным источником энергии в абиогенную эру было ультрафиолетовое излучение ( 150—200 нм). Его действие имеет ряд специфических особенностей. Излучение порождает радикалы, т. е. создает весьма активные частицы, способные стать исходными точками в дальнейшей цепи превращений. Однако это происходит главным образом в верхних слоях атмосферы, откуда продукты реакции попадают на поверхность Земли с дождем или просто вследствие медленного оседания. В нижних слоях атмосферы и на поверхности гидросферы и литосферы излучение становится особенно важным фактором с момента появления фотосинтетических механизмов. Кислород, выделяющийся при фотосинтезе, превращаясь в озон, ослабляет действие ультрафиолета и защищает возникшие предбиологнческие структуры от фотохимической деструкции. Это автоматическое регулирование действия излучения способствовало целенаправленному использованию его энергии. Радиоактивность, именно излучение изотопа калия °/С, также играло существенную роль в качестве источника энергии. По мнению М. Кальвина, среднее количество энергии, доставляемое распадом °К, 2,6 млрд. лет тому назад было в четыре раза больше, чем в настоящее время. Этот исследователь считает, что в течение года на всю поверхность Земли приходится примерно 1,2-10 Дж энергии за счет распада К и 18,9-10 Дж за счет ультрафиолетового излучения. Другие возможные источники энергии (вулканизм, разряды молний и даже удары метеоритов ), вместе взятые, доставляют не более 0,58Дж/г. [c.378]

    Ионизация газа в ионизационпом детекторе может производиться также и другими способами, например электронами, ускоренными в электрическом поле (Райс и Брайс, 1957), ультрафиолетовым излучением (Лавлок, 1960а) или пламенем (разд. 3). Однако излучение радиоактивного источника имеет в сравнении со всеми другими методами ионизации то преимущество, что его интенсивность совершенно не зависит от внешних условий. [c.139]

    Нефть и все другие горючие полезные ископаемые, так же как рассеянное органическое вещество осадочных пород, генетически связаны с живым веществом нашей планеты, с биосферой прошлых геологических эпох. Проблема происхождения нефти, нижний возрастной предел ее образования тесно связаны с возрастом возникновения жизни на Земле. Согласно наиболее распространенной гипотезе. Земля возникла 4,8-5 млрд лет назад в результате слипания первичного вешества холодных тел - плане-тозималей, затем произошел ее разогрев вследствие повышенной теплогенерации. Источники энергии — радиоактивный распад, импактные воздействия, ультрафиолетовое излучение, сейсмичность, приливные возмущения и др. В результате произошла дифференциация вещества первичной Земли и сформировались ядро, мантия и земная кора, близкая по составу к современной. Дифференциация вещества вызвала выделение газов и формирование первичных океанов и атмосферы. Первичная атмосфера отличалась от современной. Она имела восстановительный характер, в ее составе были гелий и вОдород, которые быстро улетучились, метан, пары воды, аммиак, СО, СО2. Свободный кислород отсутствовал. За счет высокой активности этих веществ, очевидно, образовывались полимеры, содержащие С, К, О и другие биофильные элементы, т.е. первые органические вещества возникали путем абиогенного синтеза. [c.104]

    Мутанты в большинстве случаев ауксотрофы по ряду соединений, так как я них произошли определенные нарушения обмена веществ, вызвавшие гипертрофию некоторых функций клетки. Обычно активные штаммы, выделенные из естественных источников, подвергают действию мутагенов несколько раз, т. е. осуществляют ступенчатую селекцию, В результате получают высокопродуктивные штаммы. Часто эффективно комбинированное воздействие мутагенов химической и физической природы. Так, применение этиленимина и ультрафиолетового излучения в сочетании со ступенчатым отбором позволило получить очень активные штаммы Asp. awamori, используемые как продуценты амилолитического, протео-литического и других ферментных комплексов. Селекция производственно ценных штаммов ведется и в условиях производства. [c.55]

    Шелтон и Винсент [2] и Бейтман с сотр. [3] предположили, что для большинства полимеров разложение перекисей, указанное в реакции (Х1П-4), является основным источником радикалов, которые инициируют окисление. В процессе переработки полимеров обычно образуются в небольших количествах перекиси и другие примеси. На первых стадиях окисления Шелтон наблюдал изменение скорости, которое он объяснил началом бимолекулярного разложения, по мере того как накап.т1ивались гидроперекиси. Большинство полимерных углеводородов окисляются с заметной скоростью при действии ультрафиолетового излучения и/или повышенной температуры. В условиях атмосферных воздействий у полиэтилена, нанример, менее чем через 2 года происходит ухудшение механических и диэлектрических свойств [4, 5]. Как полиэтилен, так и полипропилен окисляются с заметной скоростью в темноте при 60° [6]. Фотоокисление полиэтилена становится заметным только через несколько месяцев экспозиции на открытом воздухе [4, 5]. Ионы некоторых металлов увеличивают скорость инициирования, ускоряя разложение гидроперекисей, вероятно, путем гомолитического распада их на радикалы. Медь является одним из активных катализаторов реакций окисления полиоле-фина. Этот эффект значительно больше для полипропилена, полиизобутилена и других полиолефинов аналогичного строения, содержащих больше третичных атомов углерода в основной цепи, чем в молекуле полиэтилена. Некоторые остатки катализатора, удерживаемые полимерами в процессе полимеризации, становятся активными катализаторами окисления. [c.452]

    В 1974 г., когда мы были готовы приступить к анализу воздействия летательных аппаратов на стратосферу, встал вопрос о другом источнике загрязнения атмосферы, обусловленном деятельностью человека. Галогенпроизводные углерода, СРС1з, СгРгСЬ (хлорфторметаны, ХФМ), получили широкое распространение в качестве хладагентов и аэрозольных наполнителей главным образом благодаря их химической инертности, т.е. отсутствию токсичности и иных вредных воздействий на живые организмы. Однако вследствие той же инертности единственный путь выведения ХФМ — это путь вверх, в стратосферу, где возможен фотолиз под действием ультрафиолетового излучения. Если дело обстоит так, то хлорсодержащие продукты фотолиза, С1 и СЮ, могут породить свой каталитический цикл, разрушающий озон подобно оксидам азота. Как только выяснилась такая возможность, началось серьезное изучение всей озонной химии стратосферы. Международный комитет ученых-экспертов, собранный Национальной академией наук, подверг детальному анализу состояние наших [c.18]

    Риттер полагал, что открытое им активное излучение отличается от светового. Юнг в 1804 г. показал способность химически активных лучей к интерференции, а в 1816 г. Био впервые высказал мысль о тождестве оптических , активных , а также тепловых (см. далее) лучей, и хотя эта точка зрения вызвала возражения, существенную поддержку ей оказал Беккерель (1840), впервые получивший отчетливую фотографию солнечного спектра, на которой было видно, что фраунгоферовы линии распространяются далеко за пределы фиолетовой части спектра. Именно с этого времени фотография стала широко применяться для изучения и видимой, и ультрафиолетовой частей спектра (дагерротиния изобретена в 1889 г.) В 1852 г. Стокс указал на применимость флуоресциирующего экрана для определения степени прозрачности различных веществ по отношению к ультрафиолетовому излзгчению и для изучения различных источников такого излучения. Эссельбах в 1859 г. впервые попытался измерить длины волн, отвечающие различным линиям в ультрафиолетовой части. С 1863 г. их определением стали систематически заниматься Маскар и другие физики..  [c.229]

    Для воспроизведения в лабораторных условиях влияния солнечного света были предложены различные методы. Пытались применять ультрафиолетовый свет ртутной лампы (фиг. 3). Хотя при помощи этого метода и возможна сравнительная оценка масел (с принятием в качестве критерия появляющегося запаха или цвета), отсутствуют сколько-нибудь достоверные доказательства, что последовательность стойкости различных масел, оцениваемой при помощи этого метода, соответствует их относительной стойкости при облучении солнечным светом. Другие источники света с более слабым, излучением в ультрафиолетовой области, повидимому, дают лучшее соответствие с результатами облучения солнечным светом. К таким источникам-относится лампа 1У1азда 81, сравнительно широко применяемая в некоторых лабораториях США [42]. 1Иожно применять такую же угольную дугу, как используется при испытании старения лакокрасочных покрытий и других [c.281]

    Излучение дуги, искры и других газоразрядных источников содержит ультрафиолетовые лучи, которые могут вызвать ожог. Особенно опасно ультрафиолетовое излучение искрового разряда для глаз. Дуга в этом отношении менее опасна, так как человек обычно отворачивается от ее света, тогда как свечение искры в первые моменты времени не вызывает неприятных ощущений и лищь через несколько часов после прямого действия излучения на глаза человек ощущает резкую боль и жжение в глазах. В современных приборах все щтативы помещены в светонепроницаемый корпус, снабженный электроблокировкой. Поэтому опасность снижена до минимума. Тем не менее не следует заглядывать в штатив со стороны спектрального прибора. [c.106]


Смотреть страницы где упоминается термин Другие источники ультрафиолетового излучения: [c.39]    [c.155]    [c.151]    [c.151]    [c.90]    [c.426]    [c.533]    [c.965]    [c.387]    [c.293]    [c.86]   
Смотреть главы в:

Флуориметрия в химическом анализе минерального сырья  -> Другие источники ультрафиолетового излучения

Фотохимические реакции в аналитической химии -> Другие источники ультрафиолетового излучения




ПОИСК





Смотрите так же термины и статьи:

Источники излучения



© 2025 chem21.info Реклама на сайте