Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислотные последовательност предшественники

    В организме млекопитающих С. существует в дву мол. формах, к-рые образуются иэ общего предшественника,-собственно С. (С.-14) и полипептида, состоящего из 28 аминокислотных остатков (т. наз. С.-28 в нем аминокислотная последовательность С. соответствует фрагменту 15-28). В тонком кишечнике образуется в осн. С.-28, тогда как в поджелудочной железе и мозге--С.-14. [c.383]

    В 1970-1980-х годах в эндокринологии произошли события чрезвычайной важности, качественно изменившие состояние этой области знаний. Не преследуя цель дать здесь исчерпывающий обзор всех событий, отметим основные вехи происшедшей перемены. Прежде всего был открыт новый класс биологически активных веществ - нейропептидов, т.е. эндогенных пептидов, регулирующих деятельность нервной системы, в первую очередь головного мозга. За короткое время получена детальная информация об их химической структуре, предшественниках, содержащих в своих аминокислотных последовательностях целые ансамбли разнообразных нейропептидов. Это дало толчок интенсивным исследованиям их биологического действия и механизмов регуляции и взаимосвязи с многочисленными функциями организма. Следующим существенным моментом явилось становление генной инженерии. В кратчайший срок удалось систематизировать данные о ранее известных нейропептидах и предсказать (что сразу же нашло подтверждение) существование новых представителей этого класса пептидов. Кроме того, стало реальным радикальное решение важнейшей проблемы - обеспечение практически неограниченного количества нейропептидов человека путем синтеза их с помощью микроорганизмов, а не экстракцией в ничтожных количествах из опухолей и органов умерших. [c.336]


    Топологическую взаимосвязь можно превратить в филогенетическое дерево. Исходя из существующих молекулярных видов, нужно разместить предшественников в точках разветвлений. Точку разветвления выбирают таким образом, чтобы числа замен во всех ветвях до существующих видов были по возможности близкими. В нашем примере обе точки разветвления а и 3 в этом отношении эквивалентны (рис. 9.3), что приводит к выбору БВ и ВТ в качестве соответствующих предшественников. Если, однако, обратиться к организмам, то вопрос будет решен в пользу ВТ, поскольку он встречается в более древних таксонах [145]. С помощью дерева можно также установить, что аминокислотная последовательность бычье- [c.213]

    Третьим гормоном гипофиза, образование которого вместе с АКТГ и р-ЛПГ происходит из единого полипептидного предшественника, является мелано-цит-стимулирующий гормон (МСГ). Вьщеляют два типа МСГ аир а-МСГ более консервативен, независимо от вида животного он состоит из 13 аминокислотных остатков. Ниже приведена аминокислотная последовательность а-МСГ обезьяны  [c.147]

    Генетический контроль над синтезом НЬ. Синтез четырех полипептидных цепей НЬ человека контролируется четырьмя генами, обозначаемыми по названию цепей а-, р-, у- и б-. Сходство в строении а- и р-, и особенно у- и р-, р- и б-цепей наводит на мысль, что все они произошли от общего предшественника в результате большого числа мутаций. Возможно, что на ранних ступенях эволюции существовал гемопротеид только с одной полипептидной цепью, имеющей определенную аминокислотную последовательность, образование которой контролировалось единственным геном. В результате дупликации генетического материала образовался новый ген, развитие которого пошло независимым путем и привело к гену современного миоглобина, имеющего одну полипеп-тидную цепь. [c.146]

    Функциональные белки далеко не всегда синтезируются в активной форме. Так, многие гидролитические (пищеварительные) ферменты синтезируются в форме неактивных предшественников, которые называют зимогенами. Активация зимогенов происходит посредством сайт-специ-фического ограниченного протеолиза, сопровождающегося отщеплением определенного фрагмента аминокислотной последовательности. В качестве одного из примеров можно назвать также полипептидный [c.28]

    Продукты примерно половины всех открытых до сих пор онкогенов - это протеинкиназы, фосфорилирующие белки-мишени по остаткам тирозина, серина или треонина. Это не удивительно, так как фосфорилирование играет важную роль в процессах передачи сигнала, запускаемых как каталитическими рецепторами, так и рецепторами, сопряженными с G-белками, и для его осуществления имеется весьма обширное семейство протеинкиназ. Уже известно более 70 протеинкиназ, и все они, видимо, происходят от общего предшественника, так как их каталитические домены гомологичны (рис. 12-25). Фактически сейчас уже возможно предсказать, будет ли белок киназой и если да, то какие остатки - серина, треонина или тирозина - он будет фосфорилировать, просто исходя из данных о его аминокислотной последовательности. В следующем разделе мы увидим, что два главных внутриклеточных посредника - сАМР и Са -реализуют многие свои эффекты, активируя протеинкиназы, специфичные в отношении серина и треонина [c.370]


    На процессы роста нейронов могут оказывать влияние многие химические агенты, которые воздействуют на мембрану или на органеллы нервной клетки. Кроме того, имеются некоторые специфические факторы, которые ускоряют рост определенных типов нейронов. Наиболее известным из них является фактор )оста нервов (ФРН). ФРН — это белок с мол. массой 130 000. Зго главная нейроактивная субъединица — полипептид, у которого аминокислотная последовательность сходна с установленной для инсулина. Это позволяет предположить, что у этих двух веществ в процессе эволюции был один общий предшественник. ФРН обычно секретируется производными нервного гребня и стимулирует рост аксонов соответствующих клеток. Он играет существенную роль в росте и созревании нейронов спинальных и симпатических ганглиев (см. рис. 10.2). Кроме того, ФРН является для экспериментатора полезным инструментом при изучении роста отростков в культурах клеток и тканей. [c.242]

    Используя технику клонирования ДНК [599] и анализа нуклеотидных последовательностей [600], Наканнши и сотр. foOl] установили нуклеотидную последовательность мРНК-предшественника. Нумерация аминокислотной последовательности положительная справа от N-концевой аминокислоты АКТГ, в левую сторону отсчет идет со знаком минус. Белок-предшественник содержит 8 пар основных аминокислот и одну двойную пару -Lys-Lys-Arg-Arg. В этих местах происходит ферментативное расщепление белка с образованием различных пептидов. /3-Липотропин образует С-концевую область и, вероятно, отщепляется непосредственно от предшественника. Общая схема ферментативного расщепления и вид фрагментации к настоящему времени еще не установлены. В отличие от известных последовательностей /3-липотропинов свиньи и овцы /3-липотропин теленка содержит между 35 и 36 аминокислотными остатками два дополнительных (-Ala-Glu-) этим объясняются различные длины цепей липотропинов (см. схему). Анализ на ЭВМ аминокислотной последовательности отрицательной части предшественника дал интересный результат между позициями —55 и —44 найдена аминокислотная последовательность -Tyr-Val-Met-Gly-His-Phe-Arg-Trp-Asn-Arg-Phe-Gly-, имеющая большое сходство с а- н /3-МСГ. Так как в области аминокислотной последовательности предшественника от —111 до —105 присутствует еще один участок, имеющий структурное сходство с МСГ-пептидами, предполагается существование серии дупликаций гена, аналогично имеющей место в случае иммуноглобулинов. О [c.242]

    Отметим, что этот метод дает сведения об аминокислотной последовательности предшественников в точках разветвления. Именно этот этап является основным в упоминавшемся выше методе пред-шествуюш,их последовательностей . При сравнении более чем четырех (поли)пептидов в обш,ем случае точного решения получить нельзя. В таких случаях, в частности, например, для цитохрома с (70 специализированных белков) и для сериновых протеаз (20 дифференцированных белков, см. ниже), метод предшествующих последовательностей [513] используется для достижения воз.можно лучшей подгонки при построении на основе имеющихся данных наилучшего филогенетического дерева. Очевидно, что в таком дереве будет наблюдаться тем больше неопределенностей в некой предшествующей последовательности, чем более удалена во времени точка разветвления. [c.215]

    Биосинтез Л г осуществпяется из а- и -субъединиц, к рые образуются раздельно из соответствующих высокомол белков-предшественников, аминокислотная последовательность к-рых кодируется разл генами Образование зрелых полипептидных цепей происходит в результате специфич протеолитич расщепления белков-предшественников У женских особей Л г стимулирует овуляцию, разрыв фолликула с освобождением яйцеклетки и формирование желтого тела а также секрецию прогестерона В мужском организме Л г стимулирует ф-цию интерстициальных клеток семенников, в т ч секрецию ими мужского полового гормона тестостерона Снижение секреции Л г приводит к нарушению детородной ф-ции и бесплодию Л г выделяют из гипофизов животных и человека [c.619]

    М. г. синтезируются и секретируются в кровь промежут. долей гипофиза, где оки образуются из общего предшественника-проопиомеланокортина. Причем а-М.г. образуется в ходе процессинга (превращений) адренокортикотропина, а -М.г.- -липотропина, в состав к-рых входят аминокислотные последовательности М. г. Предшественник у-М. г.-N-концевой фрагмент (т. наз. 16К-фрагмеит) проопиомеланокортина. [c.23]

    Детали строения гомологичных белков могут быть следствием конвергентной зволюции. В процессе последующего развития белков от некоторого общего предшественника также можно выявить некоторые аспекты конвергентной эволюции в отношении общего построения этих белков [273, 597]. Например, в малом варианте цитохрома jji глубоко лежащая пропионовая группа гема связана водородной связью с Тгр-56, а в большом варианте митохондриального цитохрома с — с Тгр-59 [509]. В этом случае важные для функции остатки Тгр занимают неэквивалентные положения в гомологических полипептидных цепях. Это показывает, что моделирование аминокислотной последовательности с фиксацией положения функциональных остатков может привести к неверным выводам. [c.233]

    Аминокислотная последовательность Met-энкефалина соответствует последовательности аминокислотных остатков 61—65 -липотропина — полипептида гипофиза, которому до сих пор не приписана никакая специальная функция, кроме слабо выраженного липотропного гормонального действия. Возможно, он служит предшественником для синтеза энкефалинов или по крайней мере одного Met-энкефалина. Аминокислотная последовательность Leu-энкефалина не присутствует, однако, в -ли-потропине, но содержится в динорфине — другом пептиде гипофиза. Еще одно затруднение связано с тем, что в гипофизе присутствует большой белок-предшественник (рис. 8.27), первичная структура которого не только содержит -липотропин, но также и адренокортикотропный гормон (АСТН). Последний регулирует функции желез внутренней секреции, а также образование и секрецию кортизона. Механизм образования Met-энкефалина из предшественника неясен. Помимо энкефалина, другие фрагменты липотропина также обладают опиатными свойствами. Среди этих так называемых эндорфинов -эндорфин (последовательность 61—91 липотропина) особенно известен своим заметным анальгетическим действием. [c.234]


    Уменьшение количеств белков и пептидов, необходимых для анализа их структуры, является одной из центральных проблем, стоящих перед исследователями. С целью ее решения ведется поиск новых методов изучения структуры, в частности более чувствительных способов идентификации производных аминокислот (см. с. 61). Один из перспективных подходов заключается в широком использовании радиоактивных методов анализа. В ряде лабораторий при деградации пептидов в секвенаторе применяется радиоактивный или С-ФИТ1Д. Можно вводить радиоактивную метку непосредственно в анализируемый белок. Для многих белков это достигается добавлением радиоактивно меченных аминокислот непосредственно в питательную среду, на которой выращивается культура, являющаяся источником исследуемого белка. Таким же путем оказывается возможным радиоактивно метить белок избирательно по определенным аминокислотным остаткам. Если белок, радиоактивно меченный, например, по остаткам лейцина, анализировать с помощью секвенатора, то простое измерение радиоактивности экстрактов, содержащих анилинотиазолиноны, позволяет безошибочно определить, в каких положениях полипептидной цепи в N-концевой области белка расположены остатки лейцина (рис. 31). Аналогичным образом можно определить положение и других аминокислотных остатков. Такой прием используется для анализа N-koh-цевой последовательности предшественников белков, доступных лишь в ничтожно малых количествах. Для исследования полной структуры он, однако, не применяется из-за дороговизны и трудоемкости. [c.79]

    Каллидин и брадикинин относятся к пептидам плазмы крови. Они повышают проницаемость капилляров, обладают мощным сосудорасширяющим действием, являются сильнейшими возбудителями болевых ощущений. Оба пептида образуются из общего предшественника кининогена в результате протеолитического расщепления. Брадикинин — линейный нонапептид, имеющий следующую аминокислотную последовательность Arg—Pro—Pro-—Gly—Phe—Ser—Pro—Phe—Arg. Каллидин отличается от него наличием еще одного аминокислотного остатка (Lys) на N-конце макромолекулы. Эти пептиды легко инактивируются в результате отщепления С-концевого аргинина при участии фермента карбоксипептидазы. [c.84]

    Транспорт некоторых белков-предшественников в межмембранное пространство митохондрий начинается с их переноса в матрикс (рис. 8-29). Однако за N-концевым сигнальным пептидом, инициирующим этот перенос, расположена очень сильно гидрофобная аминокислотная последовательность. Как только сигнальный пептид отщепляется матриксной протеазой, эта гидрофобная последовательность начинает, в свою очередь, выполнять роль сигнального пептида для обратного встраивания данного белка во внутреннюю мембрану. Вероятно, этот перенос происходит с помощью механизма, сходного с механизмом встраивания белков в мембрану ЭР. Аналогичный способ используется и для встраивания во внутреннюю мембрану митохондрий белков, кодируемых митохондриальным геномом (рис. 8-30, А). [c.32]

    Наиболее радикальная модификация, которой подвергаются белки перед секрецией, происходит в последнюю очередь. Многие полипептидные гормоны и нейропептиды синтезируются в форме неактивного белка-предшественника, из которого затем в результате протеолиза образуется активная молекула. Полагают, что это расщепление начинается в транс-сети Голъджи и продолжается в секреторных пузырьках. Сначала связанная с мембраной протеаза расщепляет белок по связям основных аминокислот (Lys-Arg, Lys-Lys, Arg-Lys, или Arg-Arg), после чего происходит окончательная доделка секретируемого продукта (рис. 8-66). В простейшем случае полипептид часто имеет только один N-концевой про-участок, который отщепляется с образованием зрелого белка незадолго до секреции. Следовательно, такие белки синтезируются в виде пре-про-белков, у которых пре-часть является сигнальным пептидом ЭР, удаляемым в шероховатом ЭР. В более сложном случае пептидные молекулы синтезируются в виде полипротеинов, содержащих множество копий одной и той же аминокислотной последовательности (см. рис. 8-66). И наконец, в клетке существуют пептиды, выступающие в роли предшественников для множества различных конечных продуктов. Эти конечные продукты по одному отщепляются от исходной полипептидной цепи. В разных типах клеток одни и те же полипротеины могут расщепляться, различным образом, увеличивая тем самым разнообразие молекул, участвующих в химической передаче сигнала между клетками. [c.64]

Рис. 8-72. Транспорт вновь образованных лизосомных гидролаз в лизосомы. В цис-аппарате Гольджи предшественники лизосомных гидролаз метятся при помощи ман-нозо-6-фосфатных групп, а в транссети Гольджи отделяются от других типов белков. Это отделение происходит потому, что отпочковывающиеся от транс-сети Г ольджи клатриновые окаймленные пузырьки содержат рецепторы маннозо-6-фосфата, связывающие лизосомные гидролазы Пузырьки утрачивают кайму и сливаются с эндолизосомами (см. рис. 8-71). При низком рП. который существует в эндолизосомах, гидролазы отщепляются от рецепторов Рецепторы возвращаются в аппарат Г ольджи для проведения повторных циклов транспорта. Вероятность возвращения гидролазы в аппарат Г ольджи вместе с рецептором сильно снижается за счет удаления фосфата от маннозного остатка. Хотя существует два структурно различных маннозо-6-фосфат-ре-цепторных гликопротеина, сильно отличающихся по размерам, они имеют сходную аминокислотную последовательность и, вероятно, выполняют сходные функции. Рис. 8-72. Транспорт вновь образованных лизосомных гидролаз в лизосомы. В цис-<a href="/info/97362">аппарате Гольджи</a> предшественники лизосомных гидролаз метятся при помощи ман-нозо-6-<a href="/info/105049">фосфатных групп</a>, а в транссети Гольджи отделяются от <a href="/info/1891213">других типов белков</a>. Это отделение происходит потому, что отпочковывающиеся от транс-сети Г ольджи <a href="/info/509637">клатриновые</a> окаймленные пузырьки содержат <a href="/info/1339383">рецепторы маннозо</a>-6-фосфата, связывающие лизосомные гидролазы Пузырьки утрачивают кайму и сливаются с <a href="/info/1339689">эндолизосомами</a> (см. рис. 8-71). При низком рП. который существует в <a href="/info/1339689">эндолизосомах</a>, гидролазы отщепляются от <a href="/info/103200">рецепторов Рецепторы</a> возвращаются в аппарат Г ольджи для проведения <a href="/info/1901744">повторных циклов</a> транспорта. Вероятность возвращения гидролазы в аппарат Г ольджи вместе с рецептором сильно снижается за счет <a href="/info/15164">удаления фосфата</a> от маннозного остатка. Хотя существует два <a href="/info/1737823">структурно различных</a> маннозо-6-фосфат-ре-цепторных гликопротеина, сильно отличающихся по размерам, они имеют сходную <a href="/info/31042">аминокислотную последовательность</a> и, вероятно, выполняют сходные функции.
Рис. 12-25. Размеры и локализация каталитических доменов некоторых протеинкиназ, рассмотренных в этой главе. Во всех случаях каталитический домен (выделен цветом) состоит примерно из 250 аминокислотных остатков и имеет сходную аминокислотную последовательность это позволяет предполагать происхождение их всех от общего предшественника. Три представленные здесь тирозин-специфические киназы-трансмембранные белки-рецепторы, которые при связывании специфического внеклеточного лиганда активируются и фосфорилируют ряд белков внутри клетки (в том числе и самих себя) по остаткам тирозина. Обе цепи рецептора инсулина кодируются одним геном, продукт которого - белок-предшественник - расщепляется на две цепи, связанные дисульфидными мостиками. Внеклеточная часть рецептора PDGF, по-видимому, сложена в пять иммуноглобулиноподобных доменов - возможно, этот белок относится к суперсемейств> иммуноглобулинов (разд. 18.6.20). Регуляторные субъединицы А-киназы (см. рис. 12-27) и киназы фосфорилазы (см. рис. 12-31), в норме Рис. 12-25. Размеры и локализация <a href="/info/1403720">каталитических доменов</a> некоторых протеинкиназ, рассмотренных в <a href="/info/1656236">этой главе</a>. Во всех случаях <a href="/info/1403720">каталитический домен</a> (выделен цветом) состоит примерно из 250 аминокислотных остатков и имеет сходную <a href="/info/31042">аминокислотную последовательность</a> это позволяет предполагать происхождение их всех от <a href="/info/1405442">общего предшественника</a>. Три представленные здесь <a href="/info/1339530">тирозин-специфические</a> киназы-<a href="/info/166982">трансмембранные белки</a>-рецепторы, которые при <a href="/info/104411">связывании специфического</a> внеклеточного лиганда активируются и фосфорилируют ряд белков <a href="/info/1409039">внутри клетки</a> (в том числе и <a href="/info/1080734">самих себя</a>) по остаткам тирозина. Обе цепи <a href="/info/99579">рецептора инсулина</a> кодируются одним геном, продукт которого - <a href="/info/525783">белок-предшественник</a> - расщепляется на две цепи, связанные <a href="/info/99352">дисульфидными мостиками</a>. Внеклеточная <a href="/info/1561444">часть рецептора</a> PDGF, по-видимому, сложена в пять иммуноглобулиноподобных доменов - возможно, этот <a href="/info/1748940">белок относится</a> к суперсемейств> иммуноглобулинов (разд. 18.6.20). <a href="/info/103082">Регуляторные субъединицы</a> А-киназы (см. рис. 12-27) и <a href="/info/100268">киназы фосфорилазы</a> (см. рис. 12-31), в норме
    Нуклеотидная и соответствующая аминокислотная последовательности лидерной зоны альфа-фактора и непосредственно примыкающая к ней 5 -промоторная последовательность гена показаны на рис. 7.3. Основные подходы к использованию лидерной последовательности альфа-фактора дрожжей для осуществления секреции гетерологичных генов описали Брейк и др. [23]. В структурном гене МРа-1 локализован Ятс П1-сайт, который в сайте процессинга молекулы-предшественника захватывает первый из двух повторов, соответствующих 01и-А1а. Это открывает традиционный, относительно несложный путь присоединения зрелых гетерологичных полипептидов к сигнальному пептиду альфа-фактора. Однако использование природного Я1П(11П-сайта может привести к внеклеточной секреции продукта, гетерогенного по Ы-концу большая часть молекул будет нести один или два дополнительных Ы-концевых дипептида С1и-А1а. Обусловлено это недостаточностью фермента дипептидил-аминопептидазы - продукта гена 51с13. Фермент этот элиминирует повторы С1и-А1а после того, как под действием продукта гена кех2 произойдет первичное эндопептидазное расщепление, полипептидной цепи предшественника за димером Ьуз-Аг . [c.216]

    Б. р-Липотропин (Р-ЛПГ). Этот пептид состоит из 91 аминокислотного остатка С-конца ПОМК (рис. 45.7). Р-ЛПГ содержит последовательности Р-МСГ, у-липотропина, мет-энкефалина и Р-эндорфина. В гипофизе человека найдены Р-липотропин, у-липотропин и р-эндорфин Р-МСГ не обнаружен. Р-Липотропин характерен только для гипофиза, потому что в других тканях он быстро превращается в у-липотропин и Р-эндорфин. Р-ЛПГ содержит 7-членную аминокислотную последовательность (Р-ЛПГ47 5з), идентичную фрагменту АКТГ4 ,( (рис. 45.9). Р-Липотропин стимулирует липолиз и мобилизацию жирных кислот, но его физиологическая роль невелика. По-видимому, он имеет значение только как предшественник Р-эндорфина. [c.182]

    Структурную взаимосвязь между различными НП, происходящими от одного предшественника, можно проследить на примере гормонов гипофиза. Часть из них содержит одинаковое гептапептидное ядро, которое обведено рамкой в аминокислотной последовательности а-меланотропина — меланоцитстимулирующего гормона (рис. 6, Б). [c.65]

    Как правило, аминокислотную последовательность пептида, для которого уже установлена определенная регулирующая или модулирующая функция, можно обнаружить в составе одного или нескольких значительно более крупных белков. Этот установленный факт имеет несколько интерпретаций. С одной стороны, существует теория И. П. Ашмарина о непрерывном функциональном спектре РП, которые происходят из общих предшественников (например, проопиомеланокортин и препротахикинин) путем их поэтапного расщепления на более мелкие фрагменты. Сам по себе предшественник никакой специальной активности не проявляет, но его фрагменты выполняют различные регуляторные функции, в том числе нейромедиаторные и ней-рогормональные (Ашмарин, Обухова, 1986 Ашмарин, Каменская, 1988). [c.86]

    В противоположность этому синтез нейроактивных пептидов более сложен. Он соответствует схеме синтеза пептидных гормонов (рис. 9.10), согласно которой сборка аминокислот и других предшественников в крупные полипептидные прегормоны происходит в шероховатом эндоплазматическом ретикулуме. Прегормоны превращаются в аппарате Гольджи в несколько меньшие прогормоны, которые в свою очередь расщепляются на фрагменты, являющиеся активными пептидами и заключаемые в пузырьки. Было показано, что такая общая схема справедлива для выработки нескольких нейроактивных пептидов, включая энкефалины. В действительности обнаружение того, что прогормон липотропин содержит аминокислотную последовательность энкефалина, было счастливой находкой, которая привела к установлению этапов образования пептидов с морфина-подобным действием. [c.223]


Смотреть страницы где упоминается термин Аминокислотные последовательност предшественники: [c.503]    [c.104]    [c.374]    [c.246]    [c.248]    [c.276]    [c.312]    [c.328]    [c.422]    [c.268]    [c.234]    [c.371]    [c.271]    [c.262]    [c.248]    [c.253]    [c.288]    [c.312]    [c.328]    [c.527]    [c.248]   
Принципы структурной организации белков (1982) -- [ c.211 ]

Принципы структурной организации белков (1982) -- [ c.211 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислотные последовательности



© 2025 chem21.info Реклама на сайте