Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

рецептор а и Рецепторы

    Л. с. могут оказывать местное действие (на месте нанесения препарата) или резорбтивное (после всасывания, поступления в общий кровоток и ткани). В обоих случаях они действуют либо в месте контакта с тканями, либо на рецепторные структуры (рефлекторное действие). В-ва, возбуждающие рецепторы, наз. агонистами, в-ва, уменьшающие или устраняющие действие агонистов,-антагонистами. Взаимод. агонистов и антагонистов с рецепторами осуществляется в результате хим. или межмол. связей (ковалентной, ионной, водородной и др.) в зависимости от прочности зтих связей различают обратимое и необратимое действие Л. с. Препараты, действующие только на один тип рецептора, считаются избирательными. На избирательность Л.С. влияют сродство (аффинитет) к рецептору, прочность образуемой с ним связи, а также форма и размер молекулы Л. с., его пространств, соответствие рецептору (комплементарность), расстояние между функционально активными группировками и др. св-ва. [c.585]


    Ферментный контроль обеспечивает регуляцию большинства физиологических функций организма. Ингибиторы ферментов, как правило, или сильные яды, или сильные лекарственно активные вещества. Например, ацетилсалициловая кислота, или аспирин, — это эффективный ингибитор ферментов, которые синтезирует простагландины — весьма важные биологические регуляторы. Непосредственно сами ферменты находят в настоящее время применение в терапии некоторых заболеваний 3) принципиально важные работы в настоящее время ведутся в области выяснения молекулярной природы иммунного ответа. В процессе эволюции наш организм приобрел способность бороться с проникающими в него чужеродными клетками, чужеродными белками. Иммунология и иммунохимия в настоящее время переживают бурный расцвет, и мы являемся свидетелями появления новых вакцин, иммуностимуляторов, иммунодепрессантов. Регуляция иммунной реакции —один из наиболее ярких примеров достижений биологической химии в медицине 4) все большее внимание в последние годы начинает привлекать рецепторный уровень регуляции физиологических ответов организма. Если предшествующие этапы внедрения химии в биологию и медицину были связаны в основном со случайным поиском новых веществ, то настоящее время характеризуется все более глубоким проникновением в регуляторные химические механизмы физиологических ответов клетки. В различных клетках нашего организма можно вызвать те или иные ответы путем воздействия на специфические клеточные рецепторы, понимающие и чувствующие химические сигналы, заданные структурой вводимого соединения. Это высокоэффективные регуляторные механизмы, позволяющие в ряде случаев весьма тонко повлиять на метаболические процессы в клетке. Пока мало известно о структуре и природе рецепторов. Это определяется в основном тем, что клетка содержит весьма мало рецепторов. Однако объем химической информации о клеточных рецепторах непрерывно растет, и мы являемся свидетелями появления новых лекарственных соединений, созданных на основе этой информации. [c.199]

    Ген рецептора липопротеида низкой плотности, обеспечивающего транспорт холестерола, имеет размеры более 45 т. п. н. и содержит 18 экзонов, из которых часть также обнаружена в генах, кодирующих совсем другие функции (рис. 110,6). Рецептор является [c.193]

Рис. 9.1. Модели рецепторов, а — модели функционирования рецепторов рецепторы типа I (слева) имеют собственные эффекторные системы (так, например, в ионном канале она является жестко сцепленным интегральным компонентом трансмембранного белка) рецепторы типа II (справа) могут связываться с эффектором временно или косвенно они состоят из нескольких белков, которые можно разделить биохимически б — предсказанные трансмембранные изгибы полипептидной цепи рецепторы типа I имеют, вероятно, четыре трансмембранные последовательности, а рецепторы типа II — семь. Рецепторы типа II проявляют свою функциональную активность посредством О-бел- Рис. 9.1. <a href="/info/1561448">Модели рецепторов</a>, а — <a href="/info/935410">модели функционирования</a> <a href="/info/1420645">рецепторов рецепторы типа</a> I (слева) имеют собственные эффекторные системы (так, например, в ионном канале она является <a href="/info/1421386">жестко сцепленным</a> интегральным компонентом <a href="/info/166982">трансмембранного белка</a>) рецепторы <a href="/info/50308">типа</a> II (справа) могут связываться с эффектором <a href="/info/65340">временно</a> или косвенно они состоят из нескольких белков, которые можно разделить <a href="/info/1859214">биохимически</a> б — предсказанные трансмембранные изгибы <a href="/info/31816">полипептидной цепи</a> рецепторы <a href="/info/50308">типа</a> I имеют, вероятно, четыре трансмембранные последовательности, а рецепторы <a href="/info/50308">типа</a> II — семь. Рецепторы <a href="/info/50308">типа</a> II проявляют свою функциональную активность посредством О-бел-

    Рецепторы Рецептор интерлейкина 2 человека 55 1 40 N-гликозидные. О-гликозидные [c.471]

    Некоторые посредники могут связываться с рецепторами более чем одного типа и, таким образом, участвовать в различных биологических процессах. Например, гистамин инициирует аллергические реакции, связываясь с так называемым Н1-рецептором. Кроме того, он способствует выделению желудочного сока, активируя Н2-рецептор. Переизбыток желудочного сока причиняет серьезный вред стенкам желудка и приводит к язве. Однако было найдено лекарственное средство, являющееся специфическим антагонистом На-ре-цептора. Это соединение, названное циме-тидином, связывается с Нг-рецептором и блокирует его, что приводит к уменьшению количества выделяемого желудочного сока. [c.97]

    Рецепторы фитогормонов в настоящее время недостаточно изучены. Имеющиеся данные указывают, что, по-видимому, больщая их часть представляет собой глобулярные белки с очень высоким сродством связывающие фитогормоны. В одной клетке может находиться несколько видов рецепторов одного и того же фитогормона, что обусловливает и различные виды реакции растения на один и тот же фитогормон, т. е. полифункциональность действия фитогормона. [c.334]

    Трансдуцин, также называемый G-белком, удивительно похож на N-белки — описанные в гл. 9 мембранные компоненты, передающие некоторые гормональные сигналы или сигналы нейромедиаторов от их рецепторов к ферменту аденилатциклазе. И трансдуцин, и N-белки состоят из трех полипептидных цепей <х, и и механизмы их действия, по-видимому, очень сходны. Подобие системы родопсин — трансдуцин — фосфодиэстераза и системы -адренэргический рецептор — N-белок — аденилатцик-лаза так велико, что возможна, например, перекрестная рекомбинация (замена) отдельных компонентов этих систем. В одном из таких экспериментов по реконструкции было показано, что трансдуцин способен передавать сигналы от -рецепторов к аденилатциклазе в клетках с недостаточным количеством N-белка. [c.18]

    При необычно высоких концентрациях небольших сигнальных лигандов, например адреналина или ацетилхолина, часто наблюдается другой тип регуляции поверхностных рецепторов. Такие. ниганды не вызывают эндоцитоза и расщепления комплексов лиганд-рецептор, но обратимо инактивщ)уют рецепторы. Напримф, эритроциты лягушки под действием высоких концентраций адреналина постепенно (в течение нескольких часов) теряют способность присоединять адреналин и реагировать на него. Этот эффект не может быть связан с эндоцитированием и разрушением рецепторов, поскольку 1) он проявляется и в опытах с изолированными мембранами эритроцитов и 2) бывает обратимым чувствительность к адреналину постепенно восстанавливается даже в отсутствие синтеза нового белка. Кажется вероятным, что связывание адреналина ведет к довольно стойкому, хотя и обратимому, изменению конформации рецепторного белка, которое даже спустя долгое время после отделения лиганда препятствует присоединению новой его молекулы. Связано ли это явление с обратимой ковалентной модификацией рецептора, неизвестно. [c.282]

    Разработана техническая модель зрительного анализатора на основе использования НС, названная персептроном (от слова пер-сепция — восприятие). Первый — рецепторный слой S модели состоял из 400 фотоэлементов, которые образовали поле рецепторов (20x20). Сигнал с фотоэлементов поступал на входы пороговых элементов — нейронов преобразующего слоя (элементов ). Всего в модели было 512 элементов. Каждый элемент Л имел 10 входов, которые случайным образом были соединены с рецепторами-фотоэлементами. Половина входов считалась тормозящими и имела [c.91]

    В случаях хиральной зависимости биоактивности асимметрический центр в молекулах лекарственного вещества должен ориентироваться тремя точками на хиральном участке биореиепто-ра, чувствительном к асимметрии препарата. При их нормальном взаимодействии , т.е. комплементарном трехточечном контакте (W...W, ... , 2...2, рис. 1), проявляется полезный лечебный эффект. Второй же антипод оказывается некомплементарен активному участку рецептора (правая часть рисунка W.. W, ... , а 2 не взаимодействует с 2 ) и может иметь менее выраженный лечебный эффект (или совсем не проявить его) или даже оказаться токсичным веществом. Так, установлено, что левовращающий энантиомер кокаина почти в два раза более активен в качестве местного анестетика и в четыре раза менее токсичен, чем его правовращающий оптический антипод Очевидно, что требование двухточечного контакта лекарственного вещества с рецептором снимает различия в биодействии оптических изомеров. В настоящее время среди поставляемых на фармацевтический рынок хиральных лекарственных веществ лишь 15% производится в виде индивидуальных стереоизомеров (остальные - в виде рацематов или диастереомеров). [c.20]

    В настоящее время термин рецептор применяется в двух различных значениях. Во-первых, этим термином обозначают первичные приемники сенсорных стимулов — света, осязания, температуры и боли. В этом смысле рецептор представляет собой орган, состоящий из одной или более клеток палочки и колбочки ретины (сетчатки) являются, например, фоторецепторами. Во-вторых, термин рецептор описывает на молекулярном уровне связывающий центр для низкомолекулярного активного соединения. Такое определение опять-таки не вполне точно многие исследователи считают рецептором любой центр, который специфично связывает лиганд независимо от их эндогенного или экзогенного происхождения. Нейрохимики же имеют в виду исключительно центры — мишени эндогенных эффекторов типа гормонов, простагландинов и нейромедиаторов. Согласно такому толкованию, термин рецептор не охватывает участки связывания нейротоксинов в аксональных ионных каналах или на ганглиозидах нервной мембраны он относится в основном к пре- и постсинаптическим рецепторам, которые всегда являются белками, связывающими пресинаптически высвобождающийся медиатор и тем самым обеспечивающими первую стадию химического возбуждения мембраны. Данное определение не исключает того факта, что такие рецепторы, как опиатный, обнаружены и охарактеризованы с помощью экзогенных лекарственных препаратов, и это особенно справедливо в тех случаях когда эндогенный медиатор еще неизвестен. [c.241]


    Следующие свойства рецептора особенно интересны для иейрохимиков химический состав (т. е. состоит ли он из белка углевода, глико- или липопротеина) молекулярная масса и четвертичная структура аминокислотный состав и последовательность углеводная последовательность пространственная организация молекулярных компонентов число лигандов и константы диссоциации лигандов со связывающими их участками независимость или кооперативность связывающих участков взаимодействие рецептора как со своим окружением (т. е. с мембранными липидами, с другими мембранными белками), так и с компонентами вне- и внутриклеточного пространства. Эти данные могут стать основой для попытки построения модели механизма функционирования рецептора. [c.243]

    Один из экспериментов по связыванию представлен на рис. 9.3. Кривая 1 дает общее количество связанного лиганда, как функцию его концентрации она отражает как специфическое, так и неспецифическое связывание. Для доказательства этого факта получена кривая 2, показывающая связывание радиоактивного лиганда в присутствии 100- кратного избытка холодного , т. е. немеченого лиганда. Последний вытесняет горячий лиганд из его специфически насыщаемого рецептора (с. 242, критерий 3) линейность кривой 2 свидетельствует о ненасыщаемом характере остаточного неспецифического связывания. Разность кривых 1 п 2 дает гиперболу 3, т. е. кривую насыщения, которая характеризует специфическое связывание лиганда и рецептора. Кривая 3 преобразована в график обратных величин 4), из которого и определяются/Со и максимальное связывание. Константы диссоциации и число центров связывания рассчитываются из диаграммы Скетчарда, в которой на оси координат откладывается отношение концентраций овязаннога [c.249]

    Богатые рецепторами мембранные везикулы служат прекрасными модельными системами они содержат очень мало посторонних белков, и с их помощью можно тестировать и связывание медиатора, и регуляцию ионной проницаемости. Изучение такой регуляции невозможно на очищенном рецепторе, так как он лишен своего липидного окружения. Следует также иметь в виду количественные различия между потоком ионов in vivo и их потоком через мембрану таких везикул. Как и все [c.261]

    Оба типа -рецепторов стимулируют аденилатциклазу. Они отличаются участками распознавания лиганда R. С совершенно иной ситуацией мы встречаемся в случае сс-адренэргических рецепторов. Здесь, напротив, ai регулирует в основном внутриклеточный уровень другого вторичного мессенджера — Са-+, тогда как 2 не только не активирует аденилат-циклазу, но, по-видимому, и ингибирует ее. В настоящее время считается, что сс2-рецепторы взаимодействуют с аденилатциклазой (С) через ингибиторный регуляторный белок (N, G). Имеются два различных типа таких регуляторных белков стимулирующие (Ns) и ингибирующие (Л /). Белки обоих типов были выделены и очищены (из печени, мозга и эритроцитов), была определена и их четвертичная структура. Они состоят из трех различных полипептидов, два из которых ( , "f) идентичны для обоих белков. N-Белки являются также центрами действия экзогенных факторов, таких, например, как F или бактериальные токсины холеры и коклюша (о структуре и функции токсина холеры см. гл. 2). Краткий обзор современных знаний о структуре и регуляции передачи сигнала через адреноцепторы представлен на рис. 9.14, а и б. Рис. 9.14,6 описывает также некоторые детали механизма последовательного взаимодействия R, N и С видно, что медиатор или гормон вначале активирует N путем взаимодействия с рецептором. Активация N основана на замене GDP на GTP. Активированный N взаимодействует затем с С. Такое взаимодействие носит временный характер, поскольку N инактивирует сам себя путем расщепления связанного GTP под действием присущей ему ОТРазной активности. Еще раз интересно отметить сходство этого процесса с взаимодействием родопсина, трансдуцина и фосфодиэстеразы, обнаруженным в зрительном процессе (гл. 1). Такое сходство — это нечто большее, чем просто аналогия. [c.277]

    Плазматические мембраны нейронов и мембраны некоторых не нейрональных клеток содержат специфические рецепторы (рецепторы ЫОР), которые связывают N0 вначале с низким, а затем с высоким сродством. Было показано, что рецепторы с высоким сродством образуют кластеры и вместе со связанным ЫОР попадают в клетку при эндоцитозе и транспортируются внутри клетки частично к лизосомам (где происходит их деградация), частично к ядру. При их поглощении нервным окончанием рецептор и ЫОР переносятся путем ретроградного аксонального транспорта. Подобные процессы могут происходить и при других типах гормональной регуляции и поэтому КОР служит своеобразной моделью гормонов и факторов роста. Механизм действия ЫОР в клетке не изучен. В ответ на действие ЫОР наблюдалось фосфорилирование белка и поэтому было постулировано участие в этом процессе сАМР-зависимой протеинкиназы. Идентифицировано несколько субстратов КОР-активированного фосфорилирования (среди них тирозингидроксилаза, рибосомальный белок 56, гистоны Н1 и НЗ и не-гистонные ядерные белки), но не показана связь между этими процессами и физиологической функцией МОР. [c.326]

    Известна конкуренция подофиллотоксина при взаимодействии колхицина с тубулином В результате рентгеноструктурного изучения подробностей пространственного строения колхамина 57 подофиллотоксина оказалось возможным обнаружить схожесть в строении обоих соединений у атомов, отмеченных одинаковыми буквами на формулах У и У1 57, Замещенная фенильная группа подофиллотоксина способна к свободным поворотам. Поэтому считают вероятным ее приспособление к рецептору. Водородная связь, обусловливающая взаимодействие с рецептором, благодаря возможности варьирования ее длины предоставляет широкие возможности изменения строения и конфигурации действующего вещества. Следовательно, точное соответствие рецептору признается в этом случае необязательным и изменение расстояний между атомами действующего вещества, определяющими взаимодействие с тубулином, оказывается возможным 57, однако наряду с допустимостью широкого варьирования расстояний между группами, определяющими взаимодействие с рецептором, требуется помимо того, не только наличие определенных структурных фрагментов, но и соблюдение казалось бы незначительных особенностей строения. Пример тому малоактивный изоколхицин [c.119]

    Регулятор (преобразователь). Он представляет собой белки, связанные и с рецептором, и с аденилатциклазой. Фактически это два белка, имеющие сродство к ГТФ, поэтому их называют G-белки. Один из этих белков является активатором (стимулятором) аденилатциклазы (G ,), другой — ингибитором (Gjj,g). Каждый G-белок состоит из трех полипептидных цепей (а, р и у). В состоянии покоя тример G-белка ассоциирован с ГДФ. Молекулярные механизмы, связанные с трансляцией и усилением сигнала, заключаются в следующем. Гормон, взаимодействуя с рецептором, изменяет его конформацию, при этом происходит диссоциация комплекса G5,-бeлoк-ГДФ. Кроме того, сам G-белок диссоциирует на 3,у-димер и а-субъединицу, к которой присоединяется ГТФ. Этот комплекс взаимодействует с сульфгидрильной группой аденилатциклазы и активирует данный фермент. Активная аденилатциклаза катализирует процесс синтеза цАМФ из АТФ. Ингибиторное действие Gjj g-белка [c.135]

    Взаимодействие гормонов с рецепторами. Для реализации биологического действия гормона необходимо узнавание его клеткой-мишенью, т. е. наличие у иее структур, специфически связывающих данный гормон. Компонент клетки, узнающий гормон и передающий информацию о взаимодействии с ним, называют рецептором. Рецепторы должны обладать большим сродством к гормону (константы ассоциации для большинства гормон-рецепторных взаимодействий составляют величины порядка 10 —Ю М а само взаимодействие должно осуществляться быстро и высокоспеци-фнчно. Кроме того, поскольку белковые гор С оны ие способны свободно пересекать клеточную мембрану, их рецепторы должны быть компонентами плазматической мембраны клеток, локализованными на ее внешней поверхности. Наконец, при связывании гормона рецептор должен обеспечить передачу гормонального сигнала клетке. [c.239]

    Рецепторы могут быть легко обмануты. Если какое-либо экзогенное вещество по химической структуре близко к эндогенному эффектору, оно может быть адсорбировано рецепторной молекулой. Результат при этом бывает двоякий. Изредка эндогенный агент способен активировать рецептор, подобно его естественному активатору. В таком случае его называют синер-гистом. Но чаще химический аналог, адсорбируясь на рецепторе, не вызывает ответной реакции, а лишь занимает место и блокирует доступ для естественного метаболита и тем самым препятствует формированию нормального физиологического эффекта. В этом случае используют термин антиметаболит . [c.431]

    Непрямые данные были получены прн изучении антиидиотипнческнх антител. Как уже говорилось, можно получить антитела, которые узнают антигенные детерминанты антиген-связывающих участков других антител такие детерминанты называются идиотипами. Антиидиотипические антитела, способные реагаровать с антиген-связывающим участком растворимого антитела к некоторому антигену X, будут связываться не только с анти-Х-антитела-ми в растворе, но также и с В-клетками, имеющими на своей поверхности те же самые антитела (как рецепторы для антигена X). Неудивительно, что присоединение антиидиотипических антител к этим рецепторам на поверхности В-клеток может ингибировать способность В-клеток узнавать антиген X н отвечать на него. Было показано, что в некоторых случаях антиидиотипические антитела связываются с Т-клвткамн н тоже ингибируют их способность отвечать на антиген X (рнс. 17-55). Генетические исследования позволяют предполагать, что идиотипы, общие для рецепторов В- н Т-клеток, могут кодироваться генными сегментами, определяющими вариабельные области Н-цепей иммуноглобулинов. Антиидиотипические антитела были использованы для выделения малых количеств рецепторов нз плазматических мембран Т-клеток. Хотя эти рецепторы состоят нз полипептидов, сходных по размерам с обычными Н-цепями, они не реагируют с антителами к константным областям каких-либо известных Н- или L-цепей иммуноглобулинов. Эти данные наводят на мысль, что рецепторы Т-клеток могут представлять собой какой-то новый класс Н-цепей, кодируемый специальным набором генов константной области н, возможно, некоторыми генными сегментами, кодирующими Ун-области обычных антител Этой гипотезе противоречит то, что в экспериментах с нспользованнем техники рекомбинантной ДНК не удалось [c.51]

    Способ действия токсина на молекулярном уровне пока неясен, но вероятно, что его мишенью могут быть рецепторы фос-фатидилхолина и N-ацетилгалактозамина [635]. Химено и др. [636] предположили, что в действии этого токсина участвуют нуклеотидные производные. Харди [618], используя возможности компьютерной графики, создал модель взаимодействия между токсином и рецепторами насекомых, которая смогла предсказать структуру инсектицидного белка. После того как станут известны вторичная и третичная структуры белка, может быть описан его активный центр это могло бы привести в конечном [c.311]

    Таким образом, по-видимому, существует по меньщей мере три рецептора с галактозой в качестве концевой группы один из них содержится в эритроцитах всех людей, а остальные — только в эритроцитах некоторых индивидуумов. В соответствии с имеющимися в настоящий момент ограниченными данными строение рецепторов можно изобразить следующим образом (схема XXVII)  [c.121]

    Взаимодействие гормона с рецептором. Рецептор состоит из трех компонентов 1) функциональные группы молекул, которые на поверхности плазматической мембраны клетки обеспечивают взаимодействие гормона с рецептором 2) связующие М- или С-белки. Они могут усиливать передачу гормонального сигнала (№ ) или ослаблять ее (М). Для функционирования этих белков необходима ГТФ 3) фермент катализирующий образование в цитоплазме вторичного посредника для данного гормона (аденилатциклаза — цАМФ, гуанилатциклаза -— цГМФ, фосфолипаза С — инози-толтрифосфат и диацилглицерол и др.). Во время передачи гормонального сигнала происходит сборка рецептора и усиление сигнала. Передача гормонального сигнала-возможна и без ГТФ, но он во много раз слабее. [c.378]

Рис. 8-43. Полагают, что частица, распознающая сигнал, и белок-рецептор SRP действуют согласованно, направляя в ЭР белок с сигнальным пептидом ЭР. SRP связывается с экспонированным сигнальным пептидом и с рибосомой, возможно закрывая А-участок. Поскольку поступление очередной аминоацил-тРНК блокируется, трансляция прерывается. Рецептор SRP в мембране ЭР связывает комплекс SRP-рибосома затем, в процессе сложной и плохо изученной реакции, SRP удаляется, и трансляция возобновляется, теперь уже на рибосоме, расположенной на мембране ЭР. Для механизма, с помощью которого полипептидная цепь исходно встраивается в мембрану, необходим еще отдельный трансмембрапный белок, который связывается с сигнальным пептидом (рецептор сигнального пептида), а также другие белковые компоненты, Рис. 8-43. Полагают, что частица, распознающая сигнал, и <a href="/info/1407678">белок-рецептор</a> SRP действуют <a href="/info/870704">согласованно</a>, направляя в ЭР белок с <a href="/info/166920">сигнальным пептидом</a> ЭР. SRP связывается с экспонированным <a href="/info/166920">сигнальным пептидом</a> и с рибосомой, возможно закрывая А-участок. Поскольку поступление очередной <a href="/info/32659">аминоацил-тРНК</a> блокируется, <a href="/info/33137">трансляция</a> прерывается. Рецептор SRP в мембране ЭР связывает комплекс SRP-рибосома затем, в <a href="/info/1497995">процессе сложной</a> и плохо изученной реакции, SRP удаляется, и <a href="/info/33137">трансляция</a> возобновляется, теперь уже на рибосоме, расположенной на мембране ЭР. Для механизма, с помощью которого <a href="/info/31816">полипептидная цепь</a> исходно встраивается в мембрану, необходим еще отдельный трансмембрапный белок, который связывается с <a href="/info/166920">сигнальным пептидом</a> (<a href="/info/166868">рецептор сигнального пептида</a>), а также другие белковые компоненты,
Рис. 8-72. Транспорт вновь образованных лизосомных гидролаз в лизосомы. В цис-аппарате Гольджи предшественники лизосомных гидролаз метятся при помощи ман-нозо-6-фосфатных групп, а в транссети Гольджи отделяются от других типов белков. Это отделение происходит потому, что отпочковывающиеся от транс-сети Г ольджи клатриновые окаймленные пузырьки содержат рецепторы маннозо-6-фосфата, связывающие лизосомные гидролазы Пузырьки утрачивают кайму и сливаются с эндолизосомами (см. рис. 8-71). При низком рП. который существует в эндолизосомах, гидролазы отщепляются от рецепторов Рецепторы возвращаются в аппарат Г ольджи для проведения повторных циклов транспорта. Вероятность возвращения гидролазы в аппарат Г ольджи вместе с рецептором сильно снижается за счет удаления фосфата от маннозного остатка. Хотя существует два структурно различных маннозо-6-фосфат-ре-цепторных гликопротеина, сильно отличающихся по размерам, они имеют сходную аминокислотную последовательность и, вероятно, выполняют сходные функции. Рис. 8-72. Транспорт вновь образованных лизосомных гидролаз в лизосомы. В цис-<a href="/info/97362">аппарате Гольджи</a> предшественники лизосомных гидролаз метятся при помощи ман-нозо-6-<a href="/info/510922">фосфатных групп</a>, а в транссети <a href="/info/1379238">Гольджи</a> отделяются от других <a href="/info/50308">типов</a> белков. Это отделение происходит потому, что отпочковывающиеся от транс-сети Г ольджи клатриновые окаймленные пузырьки содержат рецепторы <a href="/info/1117">маннозо</a>-6-фосфата, связывающие лизосомные гидролазы Пузырьки утрачивают кайму и сливаются с <a href="/info/1339689">эндолизосомами</a> (см. рис. 8-71). При низком рП. который существует в <a href="/info/1339689">эндолизосомах</a>, гидролазы отщепляются от рецепторов Рецепторы возвращаются в аппарат Г ольджи для проведения повторных циклов транспорта. Вероятность возвращения гидролазы в аппарат Г ольджи вместе с рецептором сильно снижается за счет <a href="/info/173271">удаления фосфата</a> от маннозного остатка. Хотя существует два структурно различных <a href="/info/1117">маннозо</a>-6-фосфат-ре-цепторных гликопротеина, сильно отличающихся по размерам, они имеют сходную <a href="/info/31042">аминокислотную последовательность</a> и, вероятно, выполняют сходные функции.

Смотреть страницы где упоминается термин рецептор а и Рецепторы: [c.201]    [c.35]    [c.42]    [c.246]    [c.278]    [c.294]    [c.631]    [c.129]    [c.352]    [c.210]    [c.362]    [c.199]    [c.104]    [c.155]    [c.346]    [c.178]    [c.260]    [c.262]    [c.317]    [c.70]   
Биохимия Том 3 (1980) -- [ c.336 , c.337 ]




ПОИСК







© 2024 chem21.info Реклама на сайте