Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Получение ацетилена окислительным пиролизом углеводородов

    Ранее уже указывалось, что можно совместно получать этилен и ацетилен путем термического и окислительного пиролиза углеводородов. Использование углеводородов природных и попутных газов для получения ацетилена позволит значительно расширить производство этого весьма важного для органического синтеза полупродукта. [c.58]


    Ацетилен стал доступен в конце XIX в., после того как был получен в промышленных условиях карбид кальция, явившийся сырьем для производства ацетилена. Использование дешевого природного газа и продуктов переработки нефти стало новым мощным стимулом для получения ацетилена и последующего развития на его основе крупной промышленности органического синтеза. Предпочтительное и пользование методов получения ацетилена из углеводородов или карбидного метода зависит главным образом от наличия в данном районе страны нефтяного сырья, природного газа или кокса и энергетических ресурсов. Из новых способов получения ацетилена чаще применяются окислительный пиролиз природного газа, электрокрекинг углеводородов и пиролиз нефтяных фракций в потоке высокотемпературных газов, образующихся в кислородной горелке. [c.9]

    Проведены [102] лабораторные исследования неполного сгорания метана, смешанного с пропаном, бутаном и бензином. Количество образовавшегося ацет тилена зависит, по существу, только от соотношения О С и не зависит от соотношения С Н в сырье. Это происходит вследствие того, что при больших значениях соотношения С Н при расходовании Oj выделяется меньше тепла, т. е. образуется меньше HjQ и больше СО. Благодаря этому сводятся на нет меньшие тепловые затраты, необходимые для превращения высших углеводородов в ацетилен. Полученные результаты относятся к неподогретому сырью. Температура воспламенения пропана оказалась, вероятно, на 200 град нпже температуры воспламенения метана, однако какие-либо данные о влиянии этого эффекта на процесс окислительного пиролиза смесей углеводородов в условиях, близких к промышленным, отсутствуют. [c.406]

    Еще один недостаток процессов получения ацетилена из углеводородов является общим для очень многих нефтехимических процессов и в известной степени для процессов нефтепереработки. Ацетилен — не единственный продукт, получаемый этим способом, как это имеет место в случае карбидного ацетилена (если не считать пушонку). Целевыми продуктами многих процессов являются смеси ацетилена и этилена. Во всех процессах получается избыток водорода, иногда чистого, иногда в смеси с СО. Эти продукты также не транспортабельны, и если стремиться наиболее выгодно их использовать, они должны найти применение на месте не в качестве горючего, а для химического синтеза. Этилен имеет пшрокое применение. Водород необходим для синтеза аммиака особенно там, где имеется азот, являющийся побочным продуктом выделения из воздуха кислорода, который используется в процессах окислительного пиролиза. Окись углерода можно использовать для получения дополнительных количеств водорода из водяного газа, для синтеза метанола нли других целей. Следовательно, такие пути использования побочных продуктов более выгодны, чем их применение в качестве горючего на том же заводе, и они являются важным фактором повышения экономичности заводов по производству ацетилена на основе углеводородов. Стоимость производимого ацетилена не может быть адекватно определена без учета этих факторов. Еще несколько лет назад структура цен на возможное сырье исключала все виды сырья, кроме сырой нефти и мазута, который не очень привлекателен с технической точки зрения, а также природного газа. Заводы по производству ацетилена из углеводородов, пущенные в 50-х годах, в основном были основаны на использовании природного газа и располагались в районах, где природный газ имелся и был, по возможности, дешевым, [c.435]


    Уксусный альдегид может быть получен различными путями дегидрированием или окислением этилового спирта, окислением легких углеводородов—этана, пропана и бутана, присоединением воды к ацетилену. Ацетилен, необходимый для синтеза уксусного альдегида последним из указанных методов, производится из карбида кальция, а также электро- или термокрекингом углеводородов. Кроме того, он может быть получен окислительным пиролизом природных газов (содержащих метан) или газов нефтепереработки, резервы которых в СССР практически неисчерпаемы. Применение этих газов для указанной цели создает возможность эффективного использования весьма доступного технического сырья. [c.216]

    При любом методе получения ацетилена из углеводородов— электродуговой крекинге, термическом или окислительном пиролизе получается смесь газов с содержанием ацетилена не более 15 объемн. % остальные 85% составляют водород, метан, этилен, окись углерода, углекислый газ (при окислительном пиролизе) и высшие гомологи ацетилена. Ввиду того что разбавленный указанными газами ацетилен нецелесообразно использовать непосредственно для синтеза, возникает необходимость в выделении ацетилена, концентрировании его и очистке от примесей. [c.70]

    Обширная монография Миллера представляет собой настоящую энциклопедию, в которой учтены практически все существенные работы по ацетилену, начиная с его открытия Эдмундом Дэви (братом известного ученого) в 1836 г. Исторически сложилось так, что путям его производства и использования посвящено больше работ, чем, пожалуй, какому-либо другому продукту (или полупродукту) органического синтеза. В связи с этим может создаться впечатление, что в этой области проведены исчерпывающие исследования. На самом деле при обсуждении кинетики образования и превращений ацетилена и выборе оптимальных путей его производства и дальнейшего использования бушуют страсти . До настоящего момента мы не знаем окончательного, описывающего все наблюдаемые явления химического механизма основного процесса образования ацетилена из метана. В последние десять лет в этой области достигнуты значительные успехи, обязанные применению новых методик исследования быстрых высокотемпературных эндотермических реакций. Интенсивно развиваются также новые промышленные способы получения ацетилена из углеводородов термический, окислительный пиролиз, плазмохимический. Имеются даже предложения использовать для получения С2Н2 интенсивные световые пучки (лазеры). [c.13]

    Рост применения ацетилена не был основан на каком-либо одном главном успехе технологии его производства. Все установки для получения ацетилена из углеводородов, которые появились в нескольких странах, были созданы в результате развития процессов электрокрекинга, регене ратив-ного или окислительного пиролиза, разработанных ранее (см. стр. 40—42). По-видимому, до самого последнего времени этими методами сложнее, чем карбидными, производить ацетилен, стоимость которого не превышала бы более чем в 2 раза стоимость этилена. Необходимо особое стечение благоприятных факторов, действующих в определенной местности, чтобы заводы по производству ацетилена из углеводородов можно было бы предпочесть карбидным. Современные условия, способствующие тому, что все чаще предпочитают необходимый для органического синтеза ацетилен получать из углеводородов, устано- [c.56]

    Давно известно, что ацетилен присутствует в продуктах неполного сгорания углеводородов, например при проскоке пламени в бунзеновской горелке. Чтобы получить достаточно высокую концентрацию ацетилена в отходящих газах, обычно вместо воздуха применяют кислород, претем сырье и кислород должны быть предварительно подогреты. Определение режима подогрева, а также формы и размеров горелки, необходимое для получения стабильного пламени в промышленных условиях, потребовало. чначительпых исследований, прежде чем процесс был осуществлен фирмой I. G. Farbenindustrie (Германия) во время войны па установке, которая, по существу, являлась укрупненной пилотной установкой. Прошло еще десять лет прежде чем были пущены первые промышленные установки (в 1953 г.). В последнее десятилетие процесс быстро распространился, заводы появились в нескольких странах, причем были использованы различные модификации первоначально разработанного метода. К 1962 г. около 350 ООО т ацетилена, т. е. около одной седьмой его мирового производства, получали методом окислительного пиролиза, потребляя при этом 1,5 млн. т кислорода. Недавно было высказано предположение [1], что процесс пиролиза начинается по окончании процесса горения. Хотя это утверждение справедливо только приближенно (стр. 396), оно позволяет точно предсказывать результаты процесса. Поскольку кинетика пиролиза уже была рассмотрена (стр. 334), ниже обсуждается только кинетика стадии горения. Энергия активации для смесей, богатых метаном, составляет 62 ккал/молъ. Механизм горения был предложен Норришем [3]  [c.380]

    Получение непредельных углеводородов из жидкого нефтяного сырья. В промышленном отношении перспективны также процессы получения ацетилена и этилена при пиролизе жидких углеводородов, бензина н сырой нефти, характеристики которых приведены в работах [80, 82—86, 172]. Эти процессы исследовались на установках мощностью до 4000 кет [86, 172]. Кинетический и термодинамический анализы разложения углеводородов определили условия проведения процессов [83]. Конверсия сырья (низкооктанового бензина) в ацетилен и олефины составляла до 75%, причем соотношение С2Н2 С2Н4 менялось в зависимости от температуры. Затраты электроэнергии составляли 4—5 кет ч на 1 кг непредельных соединений. Сопоставление показателей пиролиза бензина прямой гонки с концом кипения 150 °С в плазменной струе и окислительного пиролиза приведено в табл. Х.2. Проведен пиролиз в плазме и других продуктов переработки нефти, а также пиролиз сырой нефти [85]. Получены примерно такие же показатели, как и в случае пиролиза бензина. [c.233]


    Окислительный пиролиз легких жидких углеводородов на этилен и ацетилен имеет большие преимущества из-за стабильного состава сырья и удешевления продукции в комплексном производстве. Однако пока нп в нашей стране, ни за рубежом не удалось получить ожидаемых выходов продуктов на сырье, подвергнутое пиролизу. Здесь, видимо, как и в процессе электрокрекпнга, остается возможность для технического совершеиствова-нпя II экономического улучшения процесса. Однако пока проблема получения дешевого ацетилена пиролизом низкооктановых бензиновых фракппй не находпт быстрого п экономичного решения. [c.12]

    Для синтеза хлорпроизводных метана исходят из метана 99%-ной чп-стоты. Метанол получается непосредственно из природного газа, но тщательно очищенного от сероводорода и органической серы [24]. Сероуглерод производится также из природного газа, содержащего преимущественно метан с минимальным количеством углеводородов Сз [24]. Для производства ацетилена окислительным крекингом метана необходимо отделение этого носледиего от и СО. В электрической дуге ацетилен успешно получается из 90—92%-ного метана, а в циклично действующих регенеративных печах Вульфа пиролизу подвергается природный газ без разделения его на фракции [24]. Для получения альдегидов окислением углеводородов также нет необходимости выделять метан из природного газа. Промышленный способ окисления СН4 па фосфатах алюминия и меди проводится на сырье, содержащем 60% СЫ4 [27]. [c.159]

    В настояш ее время для получения из предельных газов активных, реакционноспособных олефинов или ацетилена намечаются еш е два пути окислительный крекинг газов, или окислительное дегидрирование, позво-ляюш ее сдвинуть равновесие дегидрирования в область более низких температур, и высокотемпературный пиролиз до смеси ацетилена с олефинами. Последний процесс детально изучался Тропшем и Эглоффом [7], показавшими, что при темнературах выше 1000° и давлении 50 мм парафиновые углеводороды могут быть превращены в смесь газов, богатую олефинами и ацетиленом. Результаты некоторых из опытов этих авторов приведены в табл. 3. [c.416]


Смотреть страницы где упоминается термин Получение ацетилена окислительным пиролизом углеводородов: [c.268]    [c.171]   
Смотреть главы в:

Производства ацетилена  -> Получение ацетилена окислительным пиролизом углеводородов




ПОИСК





Смотрите так же термины и статьи:

Ацетилен окислительным пиролизом

Ацетилен получение

Ацетилен, получение окислительным пиролизом



© 2025 chem21.info Реклама на сайте