Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетилен, получение окислительным пиролизом

    Опубликована работа [126] по сравнительной оценке различных методов производства ацетилена. Авторы этой работы на основании анализа большого фактического зарубежного и отечественного материала подвергают сомнению правильность вывода о том, что карбидный метод производства ацетилена по экономическим показателям уступает методам производства ацетилена из углеводородного сырья. На основании данных предприятий, действующих в СССР, авторы делают заключение, что по всем показателям (капиталовложения, себестоимость и энергозатраты) ацетилен, полученный окислительным пиролизом природного газа и особенно электрокрекингом, уступает ацетилену, полученному из карбида кальция (табл. V. 10). [c.169]


    Другой тип методов состоит в превращении невыделенного ацетилена в химическое соединение (или его полупродукт), для производства которого и предназначен ацетилен. Такие продукты (или полупродукты) обычно имеют значительно более высокий молекулярный вес, чем ацетилен и, следовательно, гораздо легче выделяются из газов пиролиза. Выше отмечалось, что такой метод использовался на первых заводах получения окислительным пиролизом ацетилена, необходимого для синтеза ацетона. Аналогичный метод получения ацетона осуществляется в Румынии. В настоящее время существует крупная промышленность ацетона, получаемого другим более дешевым способом из пропилена. [c.431]

    Уксусный альдегид может быть получен различными путями дегидрированием или окислением этилового спирта, окислением легких углеводородов—этана, пропана и бутана, присоединением воды к ацетилену. Ацетилен, необходимый для синтеза уксусного альдегида последним из указанных методов, производится из карбида кальция, а также электро- или термокрекингом углеводородов. Кроме того, он может быть получен окислительным пиролизом природных газов (содержащих метан) или газов нефтепереработки, резервы которых в СССР практически неисчерпаемы. Применение этих газов для указанной цели создает возможность эффективного использования весьма доступного технического сырья. [c.216]

    Ранее уже указывалось, что можно совместно получать этилен и ацетилен путем термического и окислительного пиролиза углеводородов. Использование углеводородов природных и попутных газов для получения ацетилена позволит значительно расширить производство этого весьма важного для органического синтеза полупродукта. [c.58]

    Ацетилен, полученный в результате окислительного пиролиза метана, используется для производства различных ценных веществ ацетальдегида (стр. 136), винилацетата (стр. 163), хлористого винила (стр. 89), акрилонитрила (стр. 175). [c.72]

    Получение ацетилена из метана плазменно-химическим методом также может стать более эффективным, чем существующие методы (например, окислительный пиролиз метана). Выход ацетилена более высок и себестоимость ацетилена ниже. Оба рассмотренных процесса требуют малого времени пребывания в зоне реакции, что. достигается высокой скоростью плазменной струи, а также закал- -кой, т. е. быстрым охлаждением продуктов реакции. Этими приемами фиксируются соединения (окись азота, ацетилен), отвечающие равновесию при высокой температуре. [c.284]


    Ацетилен стал доступен в конце XIX в., после того как был получен в промышленных условиях карбид кальция, явившийся сырьем для производства ацетилена. Использование дешевого природного газа и продуктов переработки нефти стало новым мощным стимулом для получения ацетилена и последующего развития на его основе крупной промышленности органического синтеза. Предпочтительное и пользование методов получения ацетилена из углеводородов или карбидного метода зависит главным образом от наличия в данном районе страны нефтяного сырья, природного газа или кокса и энергетических ресурсов. Из новых способов получения ацетилена чаще применяются окислительный пиролиз природного газа, электрокрекинг углеводородов и пиролиз нефтяных фракций в потоке высокотемпературных газов, образующихся в кислородной горелке. [c.9]

    Изучение влияния добавок водорода и окиси углерода на процесс получения ацетилена представляет практический интерес, так как при этом устанавливается возможность использования не только метана, но и коксового газа, а также газов, остающихся после выделения ацетилена. Впервые экспериментально это было проверено Фишером и Пихлером , которые проводили окислительный пиролиз коксового газа в трубках с внешним обогревом. Превращение метана, содержащегося в коксовом газе, в ацетилен достигало 50%, однако вследствие разбавления водородом и окисью углерода концентрация ацетилена в газах пиролиза не превышала 5,6 объемн. %. [c.181]

    Сущность процесса получения ацетилена окислительным пиролизом метана [101, 116—118] состоит в том, что метан в смеси с кислородом 1 подвергается неполному сжиганию в печи специальной конструкции. При этом часть метана окисляется до окиси углерода с образованием свободного водорода, а остальное количество метана превращается в ацетилен  [c.119]

    Проведены [102] лабораторные исследования неполного сгорания метана, смешанного с пропаном, бутаном и бензином. Количество образовавшегося ацет тилена зависит, по существу, только от соотношения О С и не зависит от соотношения С Н в сырье. Это происходит вследствие того, что при больших значениях соотношения С Н при расходовании Oj выделяется меньше тепла, т. е. образуется меньше HjQ и больше СО. Благодаря этому сводятся на нет меньшие тепловые затраты, необходимые для превращения высших углеводородов в ацетилен. Полученные результаты относятся к неподогретому сырью. Температура воспламенения пропана оказалась, вероятно, на 200 град нпже температуры воспламенения метана, однако какие-либо данные о влиянии этого эффекта на процесс окислительного пиролиза смесей углеводородов в условиях, близких к промышленным, отсутствуют. [c.406]

    Еще один недостаток процессов получения ацетилена из углеводородов является общим для очень многих нефтехимических процессов и в известной степени для процессов нефтепереработки. Ацетилен — не единственный продукт, получаемый этим способом, как это имеет место в случае карбидного ацетилена (если не считать пушонку). Целевыми продуктами многих процессов являются смеси ацетилена и этилена. Во всех процессах получается избыток водорода, иногда чистого, иногда в смеси с СО. Эти продукты также не транспортабельны, и если стремиться наиболее выгодно их использовать, они должны найти применение на месте не в качестве горючего, а для химического синтеза. Этилен имеет пшрокое применение. Водород необходим для синтеза аммиака особенно там, где имеется азот, являющийся побочным продуктом выделения из воздуха кислорода, который используется в процессах окислительного пиролиза. Окись углерода можно использовать для получения дополнительных количеств водорода из водяного газа, для синтеза метанола нли других целей. Следовательно, такие пути использования побочных продуктов более выгодны, чем их применение в качестве горючего на том же заводе, и они являются важным фактором повышения экономичности заводов по производству ацетилена на основе углеводородов. Стоимость производимого ацетилена не может быть адекватно определена без учета этих факторов. Еще несколько лет назад структура цен на возможное сырье исключала все виды сырья, кроме сырой нефти и мазута, который не очень привлекателен с технической точки зрения, а также природного газа. Заводы по производству ацетилена из углеводородов, пущенные в 50-х годах, в основном были основаны на использовании природного газа и располагались в районах, где природный газ имелся и был, по возможности, дешевым, [c.435]

    В одноканальный реактор получения ацетилена окислительным пиролизом метана подают в час 6500 м природного газа (в котором объемная доля метана равна 98% ) и кислород, причем объемное соотношение метана и кислорода равно 1 0,65. Определить расход кислорода и производительность реактора по ацетилену, ес- [c.45]


    При температурах окислительного пиролиза метана образующийся ацетилен неустойчив и для получения удовлетворительного выхода ацетилена необходимо быстрое охлаждение (закалка) продуктов реакции. Необходимая скорость охлаждения продуктов реакции зависит от скорости процесса разложения ацетилена. Ввиду того, что в литературе отсутствуют данные по этому вопросу, было проведено изучение процесса разложения ацетилена. [c.25]

    В связи с усовершенствованием метода окислительного пиролиза природного газа реальным сырьем для получения адипиновой кислоты становится ацетилен Кроме того, в Советском Союзе разрабатываются методы получения дикарбоновых кислот из концентрата эстонского сланца кукерсита а также из смеси оксикислот — побочного продукта нроцесса окисления парафина воздухом . Эти работы проводились пока лишь в лаборатории и на опытных установках и еще не реализованы в промышленном масштабе. [c.181]

    При получении газов. пиролиза с температурой 500°С. можно рекуперировать большую. часть тепла реакции, сохранив при этом образовавшийся ацетилен. Это позволит значительно повысить эффективность производства ацетилена окислительным пиролизом природного газа. [c.98]

    Известно пять основных промышленных методов получения ацетилена из углеводородного сырья электрокрекинг, окислительный пиролиз, регенеративный термический пиролиз, гомогенный высокотемпературный пиролиз и пиролиз в потоке водородной плазмы. В каждом из этих методов сырье разлагается при высоких температурах за короткое время пребывания в зоне реакции (от 0,003 до 0,01 сек). Это предотвращает распад ацетилена. Максимальный выход ацетилена из метана — около 25 объемн. % — достигается при 1400—1500 °С. Примерно такие же температуры требуются для переработки в ацетилен и более тяжелых видов сырья. [c.195]

    При оценке себестоимости ацетилена, полученного из углеводородного сырья, по зарубежным данным установлено, что применительно к переработке бензина и природного газа наименьшую себестоимость обеспечивает регенеративный пиролиз. Далее идет окислительный пиролиз, а наиболее дорогой ацетилен получается при гомогенном пиролизе без давления. [c.185]

    Кроме перечисленных способов синтез-газ получается и как побочный продукт при окислительном пиролизе метана с целью получения ацетилена и при пиролизе газового бензина, когда одновременно получают этилен и ацетилен. [c.165]

    При любом методе получения ацетилена из углеводородов— электродуговой крекинге, термическом или окислительном пиролизе получается смесь газов с содержанием ацетилена не более 15 объемн. % остальные 85% составляют водород, метан, этилен, окись углерода, углекислый газ (при окислительном пиролизе) и высшие гомологи ацетилена. Ввиду того что разбавленный указанными газами ацетилен нецелесообразно использовать непосредственно для синтеза, возникает необходимость в выделении ацетилена, концентрировании его и очистке от примесей. [c.70]

    Изучаются возможности снижения себестоимости ацетилена. Разрабатываются процессы плазмохимического получения ацетилена из углеводород1юго сырья и угля, а также получения смесей ацетилен — синтез-газ и ацетилен—метанол окислительным пиролизом метана (4СН - - Оз С2Нз+ 2С0 + 7Н.,). [c.356]

    Из низших парафинов получают ацетилен дегидрированием метана при 1500°С над вольфрамовым или хромовым катализатором по реакции 2СН4- С-1Н 1 + ЗН . Получение ацетилена может быть основано также на процессе окислительного пиролиза метана в пламени при 1500°С, когда сочетаются экзотермические реакции окисления и эндотермические реакции пиролиза, при зтом реакции протекают по схеме СН4 + 02 ->СгНа + СО -н Сг Н4 + СО-н Нг + НгО С. [c.274]

    В б,дизкой связи с окислительным пиролизом стоит по.лучение водорода частичным окислением углеводородных газов, на котором мы здесь останавливаться не будем. В соответствии с режимом горения окислительный пиролиз можно разделить на две группы. ]Зо-первых, горение на насадке и.ли без нее (главным образом для получения этилена из этана и пропана), во-вторых, высокоскоростное турбулентное и детонационное сгорание с высокой температурой и с малой длиной зоны реакции (главным образом при переработке метана на ацетилен или сажу). [c.54]

    Распрострапеппым полупродуктом, получаемым из углеводородного сырья, является ацетилен. Он используется для получения хлоропреново-го синтетического каучука, ацетальдегида, уксусной кислоты, поливинилового спирта, вини.яацетата, винилхлорида и других продуктов. Ацетилен долгое время получался из карбида кальция. Кроме того, производство ацетилена осуществляют следующими методами электрокрекингом метана, окислительным пиролизом метана, высокотемпературным пиролизом. В СССР производство ацетилена для получения хлоропренового каучука — основного потребителя ацетилена — осуществляется термо-окислихельным пиролизом. На наших предприятиях ацетилен те[)мо-окнслительного пиролиза дешевле карбидного примерно на 20%, капитальные затраты его ниже на 20—30% [29]. [c.184]

    Промьшшенное получение ацетилена из ПГ практически утратило свои позиции после того, как в большинстве нефтехимических процессов ацетилен был заменен на этилен. Тем не менее, ряд таких производств сохранился, и они наряду с С2Н2 вьфа-батываюг сажу [11]. В обычном режиме окислительного пиролиза на синтез ацетилена расходуется лишь 23-25 % метана, а основная его часть (55 %) вдет на поддержание высокой температуры процесса. [c.588]

    Количество и состав фракции высших ацетиленов в. какой-то мере зависят как от сырья, так и от способа получения ацетилена. Например, при гомогенном пиролизе (термокрекинге) гомологов ацетилена получается больше, чем при окислительном пиролизе, но во всех случаях количество диацетилена в этой фракции значительное и несомненно представляет интерес с точки зрения возможной его химической переработки. При крекинге метана в виде отхода производства образуется 2% газовой смеси, которая содержит 27% диацетилена и 17% металацетилена [49]. При производстве ацетилена дуговым способом на 63 ООО т в год ацетилена приходится диацетилена 4 000 т (6,35 вес. %), винилацетилена 1500 яг (2,38 вес. %) и метилацетилена 100 т (1,60 вес, %) [50]. [c.13]

    Ацетилен является одним из важнейших полупродуктов современного промышленного органического синтеза. Возможность получения ацетилена из угля (через карбид кальция) и из нефти (окислительным пиролизом метана) обеспечивает ему важную роль и в химической промышленности стран, ориентирующихся на каменноугольное сырье, и в странах с развитой нефтехимической промышленностью. Первым процессом тяжелого органического синтеза с применением ацетилена было осуществленное в начале XX века производство уксусного альдегида (и уксусной кислоты) по методу Кучерова. В 1930-х и начале 1940-х гг. в результате детальных исследований советских (Фаворский, Назаров, Шостаковский), немецких (Реппе) и американских (Ньюланд) химиков был открыт и доведен до промышленного использования ряд интересных реакций ацетилена и его производных. Теперь из ацетилена могут быть получены такие важнейшие мономеры как дивинил, хлоропрен и изопрен, которые применяются для производства основных видов синтетического каучука, и не менее важные мономеры, образующие некаучукоподобные полимеры с самыми разнообразными свойствами. Из числа последних необходимо упомянуть винилхлорид, простые и сложные виниловые эфиры, акриловую кислоту и ее эфиры, винилэтинилкарбинолы. Приготовляемые из тих полимеры находят широкое и многообразное применение в качестве пластмасс, органического стекла, присадок к смазочным маслам, синтетических клеев и медицинских препаратов. Среди многочисленных реакций ацетилена особенно интересны превращения с участием ацетиленового водорода, связанного с sp-гибридизованным углеродным атомом. Относящиеся сюда реакции нашли столь широкое применение, что практическое знакомство с ними необходимо для всех химиков-органиков. [c.40]

    В СССР в настоящее время ГИАЦ проводит крупные ойыт-но-промышленные исследования процесса окислительного пиролиза метана богатого и коксового газа в ацетилен. Предварительные результаты исследований полност техническую возможность получения ацетилена как из богатого, так и из коксового газа, очищенного от сернистых соединений. Имеются также данные [121], что в конце 1958 г. в Саарской области введен в эксплуатацию завод по производству 6000 г ацетилена в год на базе коксового газа методом окислительного пиролиза. Во Франции (Карлинг, Мозель) работает установка по получению ацетилена из метана коксового газа. Ацетилен используется для производства акрилонитрила [122]. [c.122]

    Метановая фракция смешивается с окись-углеродной и подвергается окислительному пиролизу. Продукты пиролиза — ацетилен и синт°з- Газ. Производство больших количеств ацетилена вызывает необходимость переработки его на месте получения. Поэтому часть ацетилена совместно с синильной кислотой перерабатывается в акрилонитрил, на базе которого организуется производство акрилонитрильной массы для синтетического волокна нитрон и, кроме того, производство полиакриламида — как коагулянта для углефабрик коксохимической и угольной промышленности. Часть ацетилена путем гидрохлорирования превращают в хлористый винил с дальнейшей переработкой в полихлорвиниловые смолы. Для удовлетворения потребности промышленности в ацетилене предусматривается выпуск некоторого количества товарного ацетилена для сварочных работ. Наконец, остальной ацетилен через ацетальдегид и уксусную кислоту перерабатывается в винилаЦетат и поливинилацетатные смолы. [c.178]

    Получение ацетилена из природного газа. Ацетилен С2Н2 используют для синтеза важнейших химических продуктов ацетальдегида, уксусной кислоты, этилового спирта, винилацетата, трихлорэтилена, акрилонитрила и др. В последнее время ацетилен получают не только энергоемким карбидным способом, но также окислительным пиролизом метана в смеси с кислородом при 1300—1500 °С по реакции  [c.18]

    Обширная монография Миллера представляет собой настоящую энциклопедию, в которой учтены практически все существенные работы по ацетилену, начиная с его открытия Эдмундом Дэви (братом известного ученого) в 1836 г. Исторически сложилось так, что путям его производства и использования посвящено больше работ, чем, пожалуй, какому-либо другому продукту (или полупродукту) органического синтеза. В связи с этим может создаться впечатление, что в этой области проведены исчерпывающие исследования. На самом деле при обсуждении кинетики образования и превращений ацетилена и выборе оптимальных путей его производства и дальнейшего использования бушуют страсти . До настоящего момента мы не знаем окончательного, описывающего все наблюдаемые явления химического механизма основного процесса образования ацетилена из метана. В последние десять лет в этой области достигнуты значительные успехи, обязанные применению новых методик исследования быстрых высокотемпературных эндотермических реакций. Интенсивно развиваются также новые промышленные способы получения ацетилена из углеводородов термический, окислительный пиролиз, плазмохимический. Имеются даже предложения использовать для получения С2Н2 интенсивные световые пучки (лазеры). [c.13]

    Рост применения ацетилена не был основан на каком-либо одном главном успехе технологии его производства. Все установки для получения ацетилена из углеводородов, которые появились в нескольких странах, были созданы в результате развития процессов электрокрекинга, регене ратив-ного или окислительного пиролиза, разработанных ранее (см. стр. 40—42). По-видимому, до самого последнего времени этими методами сложнее, чем карбидными, производить ацетилен, стоимость которого не превышала бы более чем в 2 раза стоимость этилена. Необходимо особое стечение благоприятных факторов, действующих в определенной местности, чтобы заводы по производству ацетилена из углеводородов можно было бы предпочесть карбидным. Современные условия, способствующие тому, что все чаще предпочитают необходимый для органического синтеза ацетилен получать из углеводородов, устано- [c.56]

    Давно известно, что ацетилен присутствует в продуктах неполного сгорания углеводородов, например при проскоке пламени в бунзеновской горелке. Чтобы получить достаточно высокую концентрацию ацетилена в отходящих газах, обычно вместо воздуха применяют кислород, претем сырье и кислород должны быть предварительно подогреты. Определение режима подогрева, а также формы и размеров горелки, необходимое для получения стабильного пламени в промышленных условиях, потребовало. чначительпых исследований, прежде чем процесс был осуществлен фирмой I. G. Farbenindustrie (Германия) во время войны па установке, которая, по существу, являлась укрупненной пилотной установкой. Прошло еще десять лет прежде чем были пущены первые промышленные установки (в 1953 г.). В последнее десятилетие процесс быстро распространился, заводы появились в нескольких странах, причем были использованы различные модификации первоначально разработанного метода. К 1962 г. около 350 ООО т ацетилена, т. е. около одной седьмой его мирового производства, получали методом окислительного пиролиза, потребляя при этом 1,5 млн. т кислорода. Недавно было высказано предположение [1], что процесс пиролиза начинается по окончании процесса горения. Хотя это утверждение справедливо только приближенно (стр. 396), оно позволяет точно предсказывать результаты процесса. Поскольку кинетика пиролиза уже была рассмотрена (стр. 334), ниже обсуждается только кинетика стадии горения. Энергия активации для смесей, богатых метаном, составляет 62 ккал/молъ. Механизм горения был предложен Норришем [3]  [c.380]

    Получение непредельных углеводородов из жидкого нефтяного сырья. В промышленном отношении перспективны также процессы получения ацетилена и этилена при пиролизе жидких углеводородов, бензина н сырой нефти, характеристики которых приведены в работах [80, 82—86, 172]. Эти процессы исследовались на установках мощностью до 4000 кет [86, 172]. Кинетический и термодинамический анализы разложения углеводородов определили условия проведения процессов [83]. Конверсия сырья (низкооктанового бензина) в ацетилен и олефины составляла до 75%, причем соотношение С2Н2 С2Н4 менялось в зависимости от температуры. Затраты электроэнергии составляли 4—5 кет ч на 1 кг непредельных соединений. Сопоставление показателей пиролиза бензина прямой гонки с концом кипения 150 °С в плазменной струе и окислительного пиролиза приведено в табл. Х.2. Проведен пиролиз в плазме и других продуктов переработки нефти, а также пиролиз сырой нефти [85]. Получены примерно такие же показатели, как и в случае пиролиза бензина. [c.233]

    Окислительный пиролиз легких жидких углеводородов на этилен и ацетилен имеет большие преимущества из-за стабильного состава сырья и удешевления продукции в комплексном производстве. Однако пока нп в нашей стране, ни за рубежом не удалось получить ожидаемых выходов продуктов на сырье, подвергнутое пиролизу. Здесь, видимо, как и в процессе электрокрекпнга, остается возможность для технического совершеиствова-нпя II экономического улучшения процесса. Однако пока проблема получения дешевого ацетилена пиролизом низкооктановых бензиновых фракппй не находпт быстрого п экономичного решения. [c.12]

    Ряд иностранных фирм (например, фирма Monter atinb) используют комбинированный окислительно-гомогенный аиролиз для получения газов, содержащих ацетилен (до 8,5 объемп. %) и этилен (до 20 объемн. %). При этом в зону пиролиза совместно с потоком газообразного теплоносителя вводят избыточный кислород. [c.125]

    Для синтеза хлорпроизводных метана исходят из метана 99%-ной чп-стоты. Метанол получается непосредственно из природного газа, но тщательно очищенного от сероводорода и органической серы [24]. Сероуглерод производится также из природного газа, содержащего преимущественно метан с минимальным количеством углеводородов Сз [24]. Для производства ацетилена окислительным крекингом метана необходимо отделение этого носледиего от и СО. В электрической дуге ацетилен успешно получается из 90—92%-ного метана, а в циклично действующих регенеративных печах Вульфа пиролизу подвергается природный газ без разделения его на фракции [24]. Для получения альдегидов окислением углеводородов также нет необходимости выделять метан из природного газа. Промышленный способ окисления СН4 па фосфатах алюминия и меди проводится на сырье, содержащем 60% СЫ4 [27]. [c.159]

    Классифицируем комбинированные производства. Вьщелим два типа этих производств. Первый, подобный описанному выше, - взаимосвязанные ХТС для производства двух и более продуктов. Второй тип - комбинированные взаимосвязанные различные химико-технологические процессы (или ХТС), производящие один продукт. Пример - производство винилхлорида. Исходным сырьем для него является этилен, получаемый пиролизом нафты, основным процессом - хлорирование этилена. Можно предложить два варианта комбинирования производства второго типа. Первый вариант заключается в следующем. Этилен разделить на два потока и один из них хлорировать. Выделяющийся при этом хлороводород направить на окислительное хлорирование этилена до винилхлорида (рис. 3.33, а). Другой вариант основан на изменении условий пиролиза, при которых можно получить в равных количествах этилен и ацетилен. Этилен хлорируют до винилхлорида, а вьщеляющийся НС1 направляют на гидрохлорирование ацетилена с получением также винилхлорида (рис. 3.33, б). В обоих вариантах почти вдвое сокращается расход одного из компонентов - хлора. При таком комбинировании получают в двух связанных друг с другом различных химико-технологических процессах один и тот же продукт. Кроме того, во втором варианте оба процесса получения продукта технологически зависят от третьего - пиролиза нафты. [c.256]

    В настояш ее время для получения из предельных газов активных, реакционноспособных олефинов или ацетилена намечаются еш е два пути окислительный крекинг газов, или окислительное дегидрирование, позво-ляюш ее сдвинуть равновесие дегидрирования в область более низких температур, и высокотемпературный пиролиз до смеси ацетилена с олефинами. Последний процесс детально изучался Тропшем и Эглоффом [7], показавшими, что при темнературах выше 1000° и давлении 50 мм парафиновые углеводороды могут быть превращены в смесь газов, богатую олефинами и ацетиленом. Результаты некоторых из опытов этих авторов приведены в табл. 3. [c.416]

    В основу всех методов получения ацетилена и этилена из углеводородного сырья положена его способность при нагревании до определенной температуры подвергаться пиролизу с образованием непредельных продуктов. Поскольку ацетилен и этилен являются промежуточными продуктами реакции, их необходимо быстро- охлавдать. Все способы получения непредельных соединений из углеводородного с фья отличаются методом подвода тепла. Ацетилен и этилен в основном получают окислительным и термоокислительным пиролизом, пиролизом в электродуговом разряде и в плазменной струе. [c.82]


Смотреть страницы где упоминается термин Ацетилен, получение окислительным пиролизом: [c.268]    [c.369]    [c.61]    [c.171]    [c.306]   
Основы химической технологии (1986) -- [ c.260 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетилен окислительным пиролизом

Ацетилен получение

Получение ацетилена окислительным пиролизом углеводородов



© 2025 chem21.info Реклама на сайте