Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физико-химические, механические и электрические свойства полимеров

    Сочетание специфических физико-механических, химических и электрических свойств полимеров позволяет использовать эти материалы в различных отраслях техники. Для рационального применения полимеров в качестве диэлектриков, полупроводников или электропроводящих материалов необходимо знание их электрических свойств, понимание закономерностей изменений этих свойств при варьировании строения полимеров и условий эксплуатации. [c.5]


    Под химической защитой полимеров от радиации понимают исключение или значительное уменьшение изменений исходного строения, структуры, физико-химических, механических, электрических и других свойств, вызываемых ионизирующим излучением, с помощью специально вводимых в небольших количествах химических соединений — антирадов. [c.304]

    Под влиянием различных воздействий полимеры подвергаются расщеплению с разрывом химических связей в главной цепи полимерной молекулы. Такие процессы называют реакциями деструкции полимеров. При деструкции понижается молекулярная масса, изменяется структура, а также физико-химические, механические, электрические и другие свойства полимеров. Деструкция полимеров происходит под действием теплоты света, ультразвука, окисления, радиационного облучения, механических воздействий и других факторов. [c.507]

    Высокомолекулярные соединения способны поглощать жидкости непосредственно либо из паровой фазы. В случае паров жидкостей этот процесс принято называть сорбцией, в случае поглощения полимером жидкостей (растворителей) —набуханием. Поглощение паров полимером "имеет равновесный характер и зависит от упругости пара и температуры. Сорбция паров приводит к изменению механических, физико-химических, оптических, электрических и диффузионных свойств полимеров. [c.168]

    В разделе характеризуются области применения, основные методы переработки, физико-химические, механические и электрические свойства пластмасс, а также свойства труб, пленок, пенопластов и клеев. Кроме того, приводятся сведения о химической стойкости и растворимости полимеров в различных средах и о важнейших антистатиках, применяемых в производстве пластмасс. Даииые о пластификаторах см. стр. 156 и 254, о стабилизаторах — стр. 244. [c.256]

    В настоящем учебнике сделана попытка охватить в одной книге все стороны науки о полимерах получение исходных мономеров, закономерности полимеризации и поликонденсации, синтез и применение олигомеров, физико-химические, механические и электрические свойства полимеров, растворы высокомолекулярных соединений, методы исследования полимеров и оценки их свойств и т. д. Такое построение книги диктуется тем, что в университетах курс Высокомолекулярные соединения является единственным общим курсом, специально посвященным полимерам. [c.3]


    Изучение релаксационных процессов играет огромную роль в понимании и определении свойств полимеров и материалов на их основе. Поэтому для оценки физико-механических и некоторых других свойств полимеров, например электрических, необходимо всегда помнить, что в зависимости от временных режимов испытания свойства полимеров могут резко изменяться. Все физические и физико-химические процессы, протекающие в полимерах, в той или иной степени связаны с релаксационными явлениями в них. [c.373]

    В ходе второго и последующих этапов испытаний, которым подвергаются полимеры, выдержавшие первый этап, более подробно изучаются их физико-механические свойства выясняется влияние различных режимов обработки и изготовления. Для этого привлекают легкое промышленное оборудование, определяют электрические свойства полимеров. Затем проводят подробные исследования теплостойкости, светостойкости и устойчивости к действию различных химических реагентов, которому новый материал будет подвергаться в условиях эксплуатации все эти свойства нового материала сопоставляют с аналогичными свойствами существующих материалов, т. е. проводят внелабораторные пробы в самых различных областях [c.123]

    Физико-химические, механические и электрические свойства полимеров [c.58]

    В настоящее время в конструкциях действующих моделей отечественного автомобиля применяются разнообразные полимеры полиолефины, ПВХ, полистирол, фторопласты, полиметилакрилат, полиамиды, полиформальдегид, поликарбонат, стеклопластики, фенольные пластики, полиуретаны, этролы и др. В табл. 3.1—3.4 приведены их физико-механические, теплофизические, химические и электрические свойства. [c.127]

    Вторая группа работ посвящена физике и физикохимии полимеров. В нее входят лабораторные работы по структуре полимеров, свойствам их растворов, определению молекулярной массы и молекулярно-массового распределения, деформации, механических и электрических свойств. При подборе этих работ сказалось, естественно, влияние специализации их составителей. Однако достоинством этого раздела является то, что все приводимые методики общедоступны и получаемые результаты легко воспроизводимы в обычной химической лаборатории. [c.7]

    Происходящие в результате внешних воздействий изменения молекулярного и надмолекулярного строения ПЭВД приводят к ухудшению его физико-механических и диэлектрических свойств. Постепенно теряется эластичность, падают относительное удлинение и прочность при разрыве, появляется и усиливается хрупкость, растут диэлектрические потери, уменьшается электрическое сопротивление, снижается стойкость к действию различных химических соединений. Происходит старение полимера. Для его замедления и ослабления успешно применяются различные стабилизаторы, предназначенные для повышения термостабильности, светостойкости, радиационной стойкости. Изучению процессов старения ПЭВД и его стабилизации посвящено большое число работ [65, 67, 164-167]. [c.165]

    Другая группа вопросов, рассмотренных в этой главе, связана с проявлением эффекта дальнодействия. В связи с этим были рассмотрены методы выявления микрогетерогенности твердой поверхности, локальных электрических нолей и активных центров, обладающих значительным дальнодействием. Дальнодействие поля поверхностных сил субстрата приводит к тому, что значительная по глубине область адгезива, примыкающая к поверхности субстрата, вовлекается в сферу действия поверхностных сил. Это обусловливает не только особенности адсорбции полимеров на твердых поверхностях, по и особенности структуры слоя адгезива, примыкающего к твердой поверхности. Подобный эффект (эффект дальнодействия) — явление достаточно широко распространенное, встречающееся при нанесении на подложки объектов различной природы. Но именно для полимеров эффект дальнодействия особенно ощутим, поскольку в полимерах, даже находящихся в растворе, существуют надмолекулярные образования значительных размеров (фибриллы, домены и т. п.). В этом случае модифицирующее влияние подложки простирается на значительную глубину. В слое полимера, примыкающем к твердой поверхности, происходят не только структурные преобразования — изменяются все физико-химические свойства этого модифицированного слоя. Изменение свойств (в том числе и физико-механических) модифицированного слоя отражается на адгезионной прочности, так как эта характеристика зависит не только от интенсивности молекулярного взаимодействия на границе раздела фаз, по и от механических свойств компонентов системы. Таким образом, рассмотренные выше процессы формирования молекулярного контакта оказывают определяющее влияние па прочность адгезионного соединения. [c.145]

    Широкое внедрение полимерных материалов в различных областях народного хозяйства поставило перед исследователями принципиально новую задачу — изучить состояние, структуру и диффузионные свойства воды в полимерной матрице. Действительно, изделия на основе полимеров при эксплуатации и хранении часто находятся в контакте с газообразными и жидкими водными средами, в результате чего изменяются их физико-химические, электрические и механические свойства. Вода, диффундирующая в полимер, изменяет его физическое состояние (пластификация), а при наличии связей, подвергающихся гидролизу, вызывает деструкцию полимерной цепи, что ухудшает свойства материала, определяемые его высокой молекулярной массой. Вода может вступать в реакцию с полимером и без разрыва полимерной цепи, однако свойства нового полимера, полученного при полимераналогичных превращениях, отличаются от свойств исходного. Для всех биополимеров (белки, нуклеиновые кислоты, полисахариды) вода является непременным компонентом и часто абсолютно необходима для проявления их биологических свойств. [c.5]


    Работы последних десяти лет в области влияния структуры на эксплуатационные свойства полимеров показали, что в процессе переработки полимеров даже чисто физическое или физико-химическое воздействие на полимерные материалы позволяет существенно изменять их свойства. Этот путь модификации полимеров открывает широкие перспективы разработки научно обоснованной технологии получения и переработки полимерных материалов. В основе этой технологии лежит формирование соответствующих надмолекулярных образований в результате воздействия тепловых, магнитных, электрических и механических полей. Так, воздействием теплового поля и давления (поле механических сил) из одного и того же химически идентифицированного полипропилена удалось получить разные материалы, отличающиеся структурой на надмолекулярном уровне и механическими свойствами [15, 16]. Воздействием магнитного поля на полиэтилен или эпоксидную смолу, наполненные ча-. стицами никеля, удается повысить их прочность в два раза и одновременно сделать эти пластмассы электропроводящими (р ) изменяется от 10 до 10 Ом-см у полипропилена [15] и от 10 до 10 Ом-см у эпоксидной смолы [16]). [c.14]

    Выбор полимерного или олигомерного компонента полностью обусловлен условиями эксплуатации. Различные условия (высокие температуры, контакт с пищевыми средами, необходимость амортизации переменных нагрузок или создания уплотнения для исключения просачивания газа или жидкости и т. п.) обусловливают выбор того или иного полимера или олигомера. Рациональный выбор основан на сопоставлении условий эксплуатации с комплексом свойств, присущих выбранной химической структуре полимера. Поэтому знание закономерностей, которые определяют комплекс свойств, присущих той или иной химической структуре, является обязательным при переработке пластических масс. Изучение специфических особенностей химического строения полимеров, проявляющихся в их механических, электрических, химических, антикоррозионных, биологических и других свойствах — это одна из задач химии и физики полимеров. В последнее время в этих областях науки отчетливо выражается тенденция специального изучения взаимосвязи структуры и свойств. [c.7]

    Практикум состоит из трех частей. В первой части приведены работы, посвященные различны.м методам синтеза полимеров — полимеризации, сополимериза-ции, поликонденсации, полиприсоединению и химическим превращениям полимеров. Вторая часть посвящена физикохимии и физике полимеров и включает лабораторные работы по структуре и физическим состояниям полимеров, деформационным, механическим и электрическим свойства.м полимеров, свойствам их растворов, определению. молекулярных масс и молекулярно-массового распределения. Третья часть включает работы по основным методам исследования полимеров ИК- и УФ-спектроскопии, дифференциально-термическому анализу, полярографии и хроматографии. Практикум содержит описание 97 лабораторных работ, которые прошли успешную апробацию. [c.8]

    Тем не менее, несмотря на обширные исследования влияния влаги на комплекс свойств различных полиамидов, нельзя считать, что его механизм установлен достаточно достоверно. Бесспорным следует считать, что влага оказывает пластифицирующее действие при комнатной температуре. Вызываемые поглощением влаги изменения физико-механических и электрических свойств в этом случае в значительной степени обратимы, однако полного восстановления свойств не происходит. При более высоких температурах влага вступает в химическое взаимодействие с полимером, в результате которого [c.142]

    Со строением молекул, их движением и взаимодействием связаны механические, тепловые, электрические, магнитные и многие другие свойства вещества. Молекулы непрестанно волнуют воображения ученых, являются объектом исследования в физике, химии, молекулярной биологии, физике полимеров, медицине. Определяются состав молекул, их размер и форма, длины связей и валентные углы, поляризуемость и дипольные моменты, частоты и амплитуды колебаний атомов и другие величины. В зависимости от состава и своего строения молекулы характеризуются различной степенью устойчивости к нагреванию, потоку радиации и другим физическим воздействиям. Строение же молекул, т. е. расположение атомов в них, предопределяется электронной конфигурацией атомов и характером химических связей между ними. [c.114]

    Первый том двухтомного справочника (предыдущее издание вышло в 1967 г.) содержит важнейшие сведения о пластических массах, выпускаемых промышленностью Советского Союза (по состоянию на вторую половину 1973 г.). В нем даны показатели физико-механических, теплофизических, электрических и химических свойств важнейших полимеризацион-ных полимеров, рассмотрены технические требования к вырабатываемым на их основе пластмассам, области их применения и способы переработки в изделия.., 8 каждом разделе приведены сведения о технике безопасности при переработке данных полимеров и пластических масс на их основе. Описаны наиболее распространенные пластификаторы, стабилизаторы и клеи для полимеров. [c.2]

    Со времени выхода первого издания справочника прошло более семи лет. За истекшие годы в промышленности пластических масс и синтетических смол были достигнуты большие успехи. Появились новые пластические массы, промышленностью освоено производство новых термостойких полимеров, улучшены физико-механические, теплофизические, электрические и химические свойства старых полимерных материалов, расширены области их применения. Все это нашло отражение во втором издании книги, в связи с чем главы справочника переработаны и дополнены в соответствии с современным уровнем развития технологии полимерных материалов. [c.3]

    Смола. Эпоксидные смолы обладают высокой химической стойкостью, низкой теплопроводностью и высоким электрическим сопротивлением. Эпоксидную смолу можно модифицировать, например ввести в молекулу смолы галогены, в результате чего образуется негорючий полимер. Изменяя отвердитель, молекулярный вес и условия отверждения, можно получить смолу, физико-механические свойства которой будут соответствовать условиям работы. [c.68]

    Книга состоит из трех частей химия, радиотехнические материалы, радиодетали. В учебнике рассматриваются теория химической связи и электрических свойств молекул, понятие о высокомолекулярных соединениях в процессах полимеризации и поликонденсации, физико-химических, механических и электрических свойств полимеров, смол, пластмасс кратко описываются технология производства и применение основных электрорадиоматериалов и радиодеталей, их свойства и назначения в аппаратуре связи. [c.2]

    Комплекс механических характеристик пластмасс в настоящее время наиболее полно представлен в разделах, посвященных физическим и эксплуатационным свойствам Классификатора свойств полимерных материалов [4], разработанного Центром данных по свойствам полимериых материалов ОНПО Пластполимер в г. Ленинграде и Всесоюзным научно-иоследователь-ским центром Государственной службы стандартных и справочных данных о свойствах материалов и веществ (ГСССД). Этот классификатор предназначен для использования в автоматизированной информационно-ио-исковой системе. Кроме механических свойств классификатор содержит также данные по молекулярной и надмолекулярной структуре полимерных материалов, их теплофизическим, электрическим, магнитным и оптическим свойствам, характеристики физико-химических свойств, относящиеся к растворению и набуханию, проницаемости, сорбционной способности, адгезионным свойствам и специфическим электрохимическим свойствам ионообменных материалов. [c.303]

    Полипропилен — ПП (ТУ 6-05-1105—78). В последние годы значительно расширено производство отечественного ПП, который является наряду с ПЭВП одним из наиболее перспективных полимеров для производства транспортной тары. ПП занимает в настоящее время первое место по темпам роста производства и применения во всем мире. Его мировое производство в настоящее время составляет более 10 млн. т в год [14]. Предполагается, что к 2000 г. ПП станет самым крупнотоннажным из всех термопластов [15]. Раступгий интерес к ПП не случаен. Он обусловлен, с одной стороны, благоприятным сочетанием физико-механических, химических, теплофизических и электрических свойств, а также его хорошей перерабатьшаемостью, а с другой стороны, доступностью необходимого для его производства мономера, более дешевого, чем этилен и стирол, что создает ему прочное конкурентоспособное положение на мировом рынке. Это положение ПП обеспечивается достигнутым уже значительным прогрессом в технологии его производства и интенсивной деятельностью в области ее усовершенствования [15]. [c.21]


Смотреть страницы где упоминается термин Физико-химические, механические и электрические свойства полимеров: [c.127]    [c.488]    [c.282]   
Смотреть главы в:

Химия и радиоматериалы -> Физико-химические, механические и электрические свойства полимеров




ПОИСК





Смотрите так же термины и статьи:

Механические свойства полимеро

Полимер физико-химические свойства

Полимеры механические свойства

Полимеры химическая

Физика полимеров

Физико-механические свойства

Электрические свойства



© 2025 chem21.info Реклама на сайте